Mistral 大语言模型

Mistral AI

Mistral AI team

Mistral AI 是一家销售人工智能产品的法国公司。它由 Meta Platforms 和 Google DeepMind 的前员工于 2023 年 4 月创立。该公司于 2023 年 10 月筹集了 3.85 亿欧元,2023 年 12 月估值超过 20 亿美元

image.png

Mistral.AI 愿景与使命

我们是一个具有高科学标准的小型创意团队。我们通过突破性的创新打造开放、高效、有用且值得信赖的人工智能模型。我们的使命是让前沿人工智能无处不在,为所有建设者提供量身定制的人工智能。这需要强烈的独立性,对开放、便携和可定制解决方案的坚定承诺,以及对在有限时间内交付最先进技术的高度关注。

image.png

在线 Chat 服务 Le Chat

image.png
image.png

开源大语言模型 Mistral Mixtral

image.png
image.png

Mistral 大语言模型

Mistral-7B

  • Mistral-7B 大型语言模型 (LLM) 是一个预训练的生成文本模型,具有 70 亿个参数。
  • 在所有基准测试中均优于 Llama 2 13B
  • 在许多基准测试中均优于 Llama 1 34B
  • 接近 CodeLlama 7B 的代码性能,同时保持良好的英语任务表现
  • 使用分组查询注意力 (GQA) 进行更快的推理
  • 使用滑动窗口注意 (SWA) 以较小的成本处理较长的序列

mistral 与 llama 的对比

image.png

基于 Hugging Face Transformers 使用 mistral


## Use a pipeline as a high-level helper
from transformers import pipeline

def test_mistral():
    pipe = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
    pipe("请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest")

使用 langchain 调用 mistral


def test_mistral():
    llm = Ollama(model="mistral", base_url="http://localhost:11434")
    r = llm.invoke('请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest')
    debug(r)

Mixtral 大语言模型

Mixtral 大语言模型介绍

这是一种具有开放权重的高质量稀疏专家混合模型 (SMoE)。根据 Apache 2.0 许可。Mixtral 在大多数基准测试中都优于 Llama 2 70B,推理速度提高了 6 倍。它是最强大的开放权重模型,具有宽松的许可证,也是成本/性能权衡方面的最佳模型。特别是,它在大多数标准基准测试中匹配或优于 GPT3.5。

image.png

Mixtral 的特点

  • 可以优雅地处理 32k 令牌的上下文。
  • 可以处理英语、法语、意大利语、德语和西班牙语。
  • 在代码生成方面表现出强大的性能。

基于 Hugging Face Transformers 使用 mixtral


## Use a pipeline as a high-level helper
from transformers import pipeline

def test_mixtral():
    pipe = pipeline("text-generation", model="mistralai/Mixtral-8x7B-Instruct-v0.1")
    pipe("请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest"))

使用 langchain 调用 mixtral


def test_mixtral():
    llm = Ollama(model="mixtral", base_url="http://localhost:11434")
    r = llm.invoke('请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest')
    debug(r)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容