详解Apache Pulsar的Topic绑定Broker

Apache Pulsar为什么要设计存储分离架构


众所周知,一个传统单套的Kafka集群基本上支持1000个左右的topic。

这是因为Kafka严重依赖于ZooKeeper集群。所有的broker在启动的时候都会往zookeeper进行注册,目的就是选举出一个controller,controller会读取注册上来的从节点的数据(通过监听机制),生成集群的元数据信息,之后把这些信息都分发给其他的服务器,让其他服务器能感知到集群中其它成员的存在 。

从集群规模的角度来看,限制 Kafka 集群规模的一个核心指标就是集群可承载的分区数。集群的分区数对集群的影响主要有两点:ZooKeeper 上存储的元数据量和控制器变动效率。

Kafka 集群依赖于一个单一的 Controller 节点来处理绝大多数的 ZooKeeper 读写和运维操作,并在本地缓存所有 ZooKeeper 上的元数据。分区数增加,ZooKeeper 上需要存储的元数据就会增加,从而加大 ZooKeeper 的负载,给 ZooKeeper 集群带来压力,可能导致 Watch 的延时或丢失。

当 Controller 节点出现变动时,需要进行 Leader 切换、Controller 节点重新选举等行为,分区数越多需要进行越多的 ZooKeeper 操作:比如当一个 Kafka 节点关闭的时候,Controller 需要通过写 ZooKeeper 将这个节点的所有 Leader 分区迁移到其他节点;新的 Controller 节点启动时,首先需要将所有 ZooKeeper 上的元数据读进本地缓存,分区越多,数据量越多,故障恢复耗时也就越长。

这也是新版本的Kafka抛弃Zookeeper的原因,当然在Apache Pulsar在设计之除就考虑到了这个问题进而设计出了存算分离架构。

存储分离架构是如何体现的


和一般的MQ不同,pulsar的数据不直接存储在Broker上,而是保存在最下面的BookKeeper集群中。Broker主要负责Pulsar的业务逻辑,BookKeeper只负责数据的存储。这样也就导致Pulsar集群可以支持几十万个Topic。由于Broker是无状态的,所以它可以很方便地实现容量的动态伸缩,另外Broker内含有一个BookKeeper Client方便与BookKeeper集群建立连接。Broker是Pulsar的逻辑中心,它是数据流和管理流的入口。Producer选择某一Broker建立连接,生产的消息存储在该Broker管理的BookKeeper 存储节点(Bookie)。


Topic为什么要和Broker绑定


当我们通过Pulsar客户端或者系统自动生成Topic时候需要选择Topic类型:non-partitioned或者partitioned,如果是non-partitioned类型需要选择一个broker进行绑定,反之需要根据设置的分片数选择多个broker进行绑定。


non-partitioned
non-partitioned


Topic怎么和Broker绑定

为了让Pulsar单集群可以承载几十万个Topic/Partition,Pulsar抽象了一个Bundle的概念,并且使用了一致性哈希算法。Topic并不会直接与Broker建立联系,让Bundle作为一致性哈希环中的虚拟节点,Topic通过名称计算哈希值,并且散列到哈希环中,找到对应的Bundle,然后通过Bundle和Broker建立连接。即ZooKeeper中保存Bundle和Broker之间的联系,Bundle归属与哪个Broker,也是通过一致性哈希动态计算出来的。

topic,bundle哈希环



参考

https://zhuanlan.zhihu.com/p/98030096

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容