解锁新姿势 | 如何用配置中心实现全局动态流控?

摘要: 当资源成为瓶颈时,服务框架需要对消费者做限流,启动流控保护机制。流量控制有多种策略,比较常用的有:针对访问速率的静态流控、针对资源占用的动态流控、针对消费者并发连接数的连接控制和针对并行访问数的并发控制。在分布式架构中,应用和应用之间的调用类型分为以下两种,流控方式也略有不同。

点此查看原文:https://yq.aliyun.com/articles/380180?spm=a2c41.11181499.0.0

当资源成为瓶颈时,服务框架需要对消费者做限流,启动流控保护机制。流量控制有多种策略,比较常用的有:针对访问速率的静态流控、针对资源占用的动态流控、针对消费者并发连接数的连接控制和针对并行访问数的并发控制。在实践中,各种流量控制策略需要综合使用才能起到较好的效果。

在分布式架构中,应用和应用之间的调用类型分为以下两种,流控方式也略有不同。

同步RPC类调用,比如RESTful,Dubbo,HSF等都属于该类。对于该类同步调用,通常限流方式为两种:针对服务提供者的并发全局流控,或针对服务消费者的并发局部流控。两种的控制手段类似,都是通过限制服务端或客服端并发调用数来进行限制。

异步MQ类调用,典型如RocketMQ, Kafka,等。对于该类异步调用,通常限流方式是在订阅端限流。限流方式为两种:针对消息订阅者的并发流控,或针对消息订阅者的消费延时流控。

针对消息订阅者的消费延时流控基本原理是,在每次客户端消费时,可以增加一个延时来控制消费速度,这样理论消费并发最快速度为:

MaxRate = 1 / ConsumInterval * ConcurrentThreadNumber

比如如果消息并发消费线程为20,延时为100ms,则理论上可以将并发消费控制在200以下。具体公式如下:

200 = 1 / 0.1 * 20

相比并发线程数流控,消费延时流控优点在于实现相对简单,对MQ类客户端包依赖较少,不需要客户端提供控制并发线程数的动态调整接口。

以上各种流量控制方法,在分布式架构下,如果要做到全局动态控制,一个简单的技术方法是依赖配置中心,即通过配置中心来进行流控参数的下发。

下面章节详细介绍如何基于配置中心来实现异步消息消费的全局动态流控。使用的例子为阿里云上的 MQ (消息队列)和 ACM (应用配置管理)两款产品。

注:之所以用MQ为示例是因为在本文撰写之时,正好MQ Consumer Client SDK并不支持动态调整现成并发数,因此通过基于ACM来动态调整消费延迟的方法正好可以解决MQ消费流控动态的问题。

基于消费延时流控的基本原理

基本原理如下。其中,管理员或应用程序通过ACM控制台发布消费延时配置(RCV_INTERVAL_TIME),所有MQ消费程序订阅该配置。理论上,该配置从发布到下发所有客户端,可以在1秒内完成(取决于网络延时)。

代码示例

该章节基于配置中心来实现异步消息消费的全局动态流控的代码示例。使用的例子为阿里云上的MQ(消息队列)和ACM(应用配置管理)两款产品,基于Java语言。关于SDK的详细介绍,可参见两款产品的官方文档。

在ACM上创建消费延时的参数,截屏如下。

设置全局消费延时变量

首先,设置消费接收延时的全局变量, 如下。

// 初始化消息接收延时参数,单位为millisecondstaticintRCV_INTERVAL_TIME =10000;// 初始化配置服务,控制台通过示例代码自动获取下面参数ConfigService.init("acm.aliyun.com",/*租户ID*/"xxx",/*AK*/"xxx",/*SK*/"yyy");// 主动获取配置String content = ConfigService.getConfig("app.mq.qos","DEFAULT_GROUP",6000);        Properties p =newProperties();try{            p.load(newStringReader(content));            RCV_INTERVAL_TIME = Integer.valueOf(p.getProperty("RCV_INTERVAL_TIME"));        }catch(IOException e) {            e.printStackTrace();        }

其次,设置ACM listener,确保当配置被修改时,即使更新 RCV_INTERVAL_TIME 参数, 如下。

// 初始化的时候,给配置添加监听,配置变更会回调通知ConfigService.addListener("app.mq.qos","DEFAULT_GROUP",newConfigChangeListener() {publicvoidreceiveConfigInfo(String configInfo) {                Properties p =newProperties();try{                    p.load(newStringReader(configInfo));                    RCV_INTERVAL_TIME = Integer.valueOf(p.getProperty("RCV_INTERVAL_TIME"));                }catch(IOException e) {                    e.printStackTrace();                }            }        });

设置 MQ 消费延时逻辑

完整实例如下。

注:这里 RCV_INTERVAL_TIME 参数的访问是故意没有加锁的,读者可以自行思考原因。Aliyun ONS Client不提供动态线程并发数,默认并发为20。因此这里正好使用消费延时参数来动态调节QoS。

//以下代码可直接贴在Main()函数里Properties properties =newProperties();    properties.put(PropertyKeyConst.ConsumerId,"CID_consumer_group");    properties.put(PropertyKeyConst.AccessKey,"xxx");    properties.put(PropertyKeyConst.SecretKey,"yyy");    properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis,"3000");// 设置 TCP 接入域名(此处以公共云生产环境为例)properties.put(PropertyKeyConst.ONSAddr,"http://onsaddr-internet.aliyun.com/rocketmq/nsaddr4client-internet");    Consumer consumer = ONSFactory.createConsumer(properties);    consumer.subscribe(/*Topic*/"topic-name",/*Tag*/null,newMessageListener()    {publicActionconsume(Message message, ConsumeContext context) {// MQ Subscribe QoS logical start, // Each consuming process will sleep for RCV_INTERVAL_TIME seconds with 100 ms sleeping cycle.// Within each cycle, the thread will check RCV_INTERVAL_TIME in case it's set to a smaller value. // RCV_INTERVAL_TIME <= 0 means no sleeping.intrcvIntervalTimeLeft = RCV_INTERVAL_TIME;while(rcvIntervalTimeLeft >0) {if(rcvIntervalTimeLeft > RCV_INTERVAL_TIME) {                    rcvIntervalTimeLeft = RCV_INTERVAL_TIME;                }try{if(rcvIntervalTimeLeft >=100) {                        rcvIntervalTimeLeft -=100;                        Thread.sleep(100);                    }else{                        Thread.sleep(rcvIntervalTimeLeft);                        rcvIntervalTimeLeft =0;                    }                }catch(InterruptedException e) {                    e.printStackTrace();                }            }// MQ Subscribe interval logical endsSystem.out.println("Receive: "+ message);/*

            * Put your business logic here.

            */doSomething();returnAction.CommitMessage;        }    });    consumer.start();

运行结果

单机运行consumer进行消费,假设queue内的消息无限多,不存在消费万的情况,分三段测试,分别运行约5分钟,通过ACM配置推送来达到以下效果。

RCV_INTERVAL_TIME = 100 ms

RCV_INTERVAL_TIME = 5000 ms

RCV_INTERVAL_TIME = 1000 ms

结果如下,在单MQ消费业务处理耗时约100ms情况下的,单机并发20线程的测试结果。

RCV_INTERVAL_TIME = 100 ms:平均消费性能约为 9000 tpm 左右

RCV_INTERVAL_TIME = 5000 ms:平均消费性能被限制到了 200 tpm 左右

RCV_INTERVAL_TIME = 1000 ms:平均消费性能回升到到了 1100 tpm 左右

以上结果基本达到消费和 tpm 成反比的预期,最关键的是整个过程中,应用不中断,流控推送结果秒级生效到分布式集群。单机性能结果如下所示。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容

  • 姓名:周小蓬 16019110037 转载自:http://blog.csdn.net/YChenFeng/art...
    aeytifiw阅读 34,721评论 13 425
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,651评论 18 139
  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,467评论 0 34
  • Kafka入门经典教程-Kafka-about云开发 http://www.aboutyun.com/threa...
    葡萄喃喃呓语阅读 10,825评论 4 54
  • 好像有了一段时间了,也就是从进了这个小区开始吧。也是因为住进了小区,人多了下楼就有人在,所以没事就坐下来,三五成群...
    寻找失踪的我阅读 176评论 0 0