03 聚类算法 - K-means聚类

02 聚类算法 - 相似度距离公式、维度灾难

二、K-means聚类

给定一个有M个对象的数据集,构建一个具有k个的模型,其中k<=M。满足以下条件:
1、每个簇至少包含一个对象;
2、每个对象属于且仅属于一个簇;
3、将满足上述条件的k个簇成为一个合理的聚类划分;

基本思想:对于给定的类别数目k,首先给定初始划分,通过迭代改变样本和簇的隶属关系,使的每次处理后得到的划分方式比上一次的好(簇内数据集距离变小)

K-means算法

K-means算法,也称为K-平均或者K-均值,是一种使用广泛的最基础的聚类算法,一般作为掌握聚类算法的第一个算法。

假设输入样本为T=X1,X2,...,Xm;则算法步骤为(使用欧几里得距离公式):
1、选择初始化的k个类别中心a1,a2,...ak。
2、对于每个样本Xi,将其标记位距离类别中心 aj 最近的类别 j 。
3、更新每个类别的中心点 aj 为隶属该类别的所有样本的均值。
4、重复上面两步操作,直到达到某个中止条件。
中止条件:
迭代次数、最小平方误差MSE、簇中心点变化率。

公式
分析K-means算法原理

那么初始的分类中心设置多少个比较合适?
其实在实际算法中,K-means聚类的算法在设置初始分类数量的操作,和KNN中设置决策树的深度一样,都是机器学习调参的一部分。需要我们对业务数据有一定的敏感度,人为得设置一个初始值。在设置好初始的分类中心个数K之后,在算法中不会自动增减分类中心的个数。

比如我想根据一组数据判断消费者的消费水平,我们可以人为得设置3个分类中心,对应消费者水平的高、中、低。但最终是否能达到要求呢?是否一定能够找到一类人群是高消费群体,一类人群是低消费群体呢?我不知道。划分出来的数据可能实际上意味着人类体重分类的高、中、低。这三类代表的含义明显和我们预期不同。这也是聚类带来的一个问题,我们在对分类问题贴标签的时候要综合考虑样本的特征,人为得出一个较为合理的分类情况。

少年们要成为优秀的产品经理,数据分析时的观察力很重要啊...


下面看看K-means的几何意义:

a:根据数据分布我们揣摩可以将他们分成2类。
b:人为定义了红点和蓝点2个分类。
c:计算每一个点到达两个分类的距离,离谁近涂上谁的颜色。
d:把分类中心红点和蓝点,分别放到两个簇的中间。
e:再把所有样本点到两个分类中心的距离计算一下,谁近涂上谁的颜色。
f:更新分类中心,发现分类中心没有变化,意味着样本也不会再发生变化了,迭代停止。

几何意义

记K个簇中心分别为a1,a2,...ak;每个簇的样本数量为N1,N2,...,NK;

使用平方误差作为目标函数(使用欧几里得距离),公式为:

平方误差作为目标函数

要获取最优解,也就是目标函数需要尽可能的小,对J函数求偏导数,可以得到簇中心点a更新的公式为:

分析

K-means算法思考

思考:如果使用其它距离度量公式,簇中心点更新公式是啥?

K-means算法在迭代的过程中使用所有点的均值作为新的质点(中心点),如果簇
中存在异常点,将导致均值偏差比较严重。

比如一个簇中有2、4、6、8、100五个数据,那么新的质点为24,显然这个质点离绝大多数点都比较远;在当前情况下,使用中位数6可能比使用均值的想法更好,使用中位数的聚类方式叫做K-Mediods聚类(K中值聚类)


K-means算法是初值敏感的,选择不同的初始值可能导致不同的簇划分规则。

为了避免这种敏感性导致的最终结果异常性,可以采用初始化多套初始节点构造不同的分类规则,然后选择最优的构造规则。

K-means算法的初值敏感:

显然上面的划分是最优的。下面的初始点选的不好,所以分的效果不好

K-means算法优缺点

缺点:
1、K值是用户给定的,在进行数据处理前,K值是未知的,不同的K值得到的结果也不一样。
2、对初始簇中心点是敏感的。
3、不适合发现非凸形状的簇或者大小差别较大的簇。

左边两个月牙形状的分类,但是使用k-means分辨不出这种分类,如右图所示

4、特殊值(离群值)对模型的影响比较大。

优点:
1、理解容易,聚类效果不错。
2、处理大数据集的时候,该算法可以保证较好的伸缩性和高效率。
3、当簇近似高斯分布的时候,效果非常不错。

04 聚类算法 - 代码案例一 - K-means聚类
05 聚类算法 - 二分K-Means、K-Means++、K-Means||、Canopy、Mini Batch K-Means算法

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354