Redis分布式锁是否真的安全

单机Redis实现分布式锁
  • 获取锁
    获取锁的过程很简单,客户端向Redis发送命令:
SET resource_name my_random_value NX PX 30000

my_random_value是由客户端生成的一个随机字符串,它要保证在足够长的一段时间内在所有客户端的所有获取锁的请求中都是唯一的。
NX表示只有当resource_name对应的key值不存在的时候才能SET成功。这保证了只有第一个请求的客户端才能获得锁,而其它客户端在锁被释放之前都无法获得锁。
PX 30000表示这个锁有一个30秒的自动过期时间。

redis.set方法详解
String set(String key, String value, String nxxx, String expx, long time);
nxxx: 取值NX或XX,如果取NX,则只有当key不存在是才进行set,如果取XX,则只有当key已经存在时才进行set
expx: 只能取EX或者PX,代表数据过期时间的单位,EX代表秒,PX代表毫秒。
time: 过期时间,单位是expx所代表的单位。

  • 释放锁
    第一种
    使用jedis工具类
if(my_random_value.equals(jedis.get(resource_name))){
     return jedis.del(resource_name)>0 ? true:false;
     }

第二种(我也不知道怎么保证的操作原子性)
之前获取锁的时候生成的my_random_value 作为参数传到Lua脚本里面,作为:ARGV[1],而 resource_name 作为KEYS[1]。Lua脚本可以保证操作的原子性。

if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

关于单点Redis实现分布式锁的讨论
  • 我的另一篇使用用如下命令获取锁:
SETNX resource_name my_random_value
EXPIRE resource_name 30

由于这两个命令不是原子的。如果客户端在执行完SETNX后crash了,那么就没有机会执行EXPIRE了,导致它一直持有这个锁,其他的客户端就永远获取不到这个锁了。

  • 用 SETNX获取锁(不是很明白)
    网上大量文章说用如下命令获取锁:
SETNX lock.foo <current Unix time + lock timeout + 1> 

原文在Redis对SETNX的官网说明,Redis官网文档建议用Set命令来代替,主要原因是SETNX不支持超时时间的设置。
https://redis.io/commands/setnx


Redis集群实现分布式锁

上面的讨论中我们有一个非常重要的假设:Redis是单点的。如果Redis是集群模式,我们考虑如下场景:

客户端1从Master获取了锁。
Master宕机了,存储锁的key还没有来得及同步到Slave上。
Slave升级为Master。
客户端2从新的Master获取到了对应同一个资源的锁。

客户端1和客户端2同时持有了同一个资源的锁,锁不再具有安全性。
就此问题,Redis作者antirez写了RedLock算法来解决这种问题。

  • RedLock获取锁
  1. 获取当前时间。
  2. 按顺序依次向N个Redis节点执行获取锁的操作。这个获取操作跟前面基于单Redis节点的获取锁的过程相同,包含随机字符串my_random_value,也包含过期时间(比如PX 30000,即锁的有效时间)。为了保证在某个Redis节点不可用的时候算法能够继续运行,这个获取锁的操作还有一个超时时间(time out),它要远小于锁的有效时间(几十毫秒量级)。客户端在向某个Redis节点获取锁失败以后,应该立即尝试下一个Redis节点。
  3. 计算整个获取锁的过程总共消耗了多长时间,计算方法是用当前时间减去第1步记录的时间。如果客户端从大多数Redis节点(>= N/2+1)成功获取到了锁,并且获取锁总共消耗的时间没有超过锁的有效时间(lock validity time),那么这时客户端才认为最终获取锁成功;否则,认为最终获取锁失败。
  4. 如果最终获取锁成功了,那么这个锁的有效时间应该重新计算,它等于最初的锁的有效时间减去第3步计算出来的获取锁消耗的时间。
  5. 如果最终获取锁失败了(可能由于获取到锁的Redis节点个数少于N/2+1,或者整个获取锁的过程消耗的时间超过了锁的最初有效时间),那么客户端应该立即向所有Redis节点发起释放锁的操作(即前面介绍的单机Redis Lua脚本释放锁的方法)。
  • RedLock释放锁
    客户端向所有Redis节点发起释放锁的操作,不管这些节点当时在获取锁的时候成功与否。

  • 关于RedLock的问题讨论

  1. 如果有节点发生崩溃重启
    假设一共有5个Redis节点:A, B, C, D, E。设想发生了如下的事件序列:

客户端1成功锁住了A, B, C,获取锁成功(但D和E没有锁住)。
节点C崩溃重启了,但客户端1在C上加的锁没有持久化下来,丢失了。
节点C重启后,客户端2锁住了C, D, E,获取锁成功。

客户端1和客户端2同时获得了锁。
为了应对这一问题,antirez又提出了延迟重启(delayed restarts)的概念。也就是说,一个节点崩溃后,先不立即重启它,而是等待一段时间再重启,这段时间应该大于锁的有效时间(lock validity time)。这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响。

  1. 如果客户端长期阻塞导致锁过期


    image.png

    解释一下这个时序图,客户端1在获得锁之后发生了很长时间的GC pause,在此期间,它获得的锁过期了,而客户端2获得了锁。当客户端1从GC pause中恢复过来的时候,它不知道自己持有的锁已经过期了,它依然向共享资源(上图中是一个存储服务)发起了写数据请求,而这时锁实际上被客户端2持有,因此两个客户端的写请求就有可能冲突(锁的互斥作用失效了)。

如何解决这个问题呢?引入了fencing token的概念:


image.png

客户端1先获取到的锁,因此有一个较小的fencing token,等于33,而客户端2后获取到的锁,有一个较大的fencing token,等于34。客户端1从GC pause中恢复过来之后,依然是向存储服务发送访问请求,但是带了fencing token = 33。存储服务发现它之前已经处理过34的请求,所以会拒绝掉这次33的请求。这样就避免了冲突。

但是其实这已经超出了Redis实现分布式锁的范围,单纯用Redis没有命令来实现生成Token。

  1. 时钟跳跃问题
    假设有5个Redis节点A, B, C, D, E。

客户端1从Redis节点A, B, C成功获取了锁(多数节点)。由于网络问题,与D和E通信失败。
节点C上的时钟发生了向前跳跃,导致它上面维护的锁快速过期。
客户端2从Redis节点C, D, E成功获取了同一个资源的锁(多数节点)。
客户端1和客户端2现在都认为自己持有了锁。

这个问题用Redis实现分布式锁暂时无解。而生产环境这种情况是存在的。

结论

Redis并不能实现严格意义上的分布式锁。但是这并不意味着上面讨论的方案一无是处。如果你的应用场景为了效率(efficiency),协调各个客户端避免做重复的工作,即使锁失效了,只是可能把某些操作多做一遍而已,不会产生其它的不良后果。但是如果你的应用场景是为了正确性(correctness),那么用Redis实现分布式锁并不合适,会存在各种各样的问题,且解决起来就很复杂,为了正确性,需要使用zab、raft共识算法,或者使用带有事务的数据库来实现严格意义上的分布式锁。

转载:https://www.zhihu.com/question/300767410/answer/647252732

这篇博客也可以:https://blog.csdn.net/lmx125254/article/details/89604638

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容