from multiprocessing.dummy import Pool as ThreadPool
from multiprocessing import Pool as ProcessPool
import asyncio
import aiohttp
import time
import requests
baseurl = 'https://www.energylabelrecord.com:12066/productpub/list.do?ec_model_no=1&type=markingTitle&typeValue=&pageNum={}&pageSize=15&_=1517580652009'
def profile(f):
def inner(*args, **kwargs):
t1 = time.time()
f(*args, **kwargs)
t2 = time.time()
print(f.__name__ + ' cost: ',t2-t1)
return inner
def scrape(url):
res = requests.get(url)
print(res.text)
@profile
def thread(pool):
for i in range(100):
num = i + 1
url = baseurl.format(num)
pool.apply_async(scrape, (url,))
pool.close()
pool.join()
print('thread end')
@profile
def process(pool):
for i in range(50):
num = i + 1
url = baseurl.format(num)
pool.apply_async(scrape, (url,))
pool.close()
pool.join()
print('Process end')
async def async_task(url):
async with aiohttp.ClientSession(loop=loop) as session:
async with session.get(url) as response:
res = await response.read()
print(res.decode())
@profile
def async():
urls = [baseurl.format(num+1) for num in range(50)]
tasks = [async_task(url) for url in urls]
loop.run_until_complete(asyncio.gather(*tasks))
if __name__ == '__main__':
loop = asyncio.get_event_loop()
tpool = ThreadPool(10)
ppool = ProcessPool(10)
async()
# thread(tpool)
# process(ppool)
经过三次测试
协程耗时分别为 7、6.95、6.76
多线程耗时分别为9.86、10.23、10.39
多进程耗时分别为9.18、9.45、9.23