ollama --- 本地部署LLM

Download & Install ollama 一个可以运行大模型的工具

Download web address: https://ollama.com/
Install it step by step after download success.

Download a AI model (name: llama3) & run it in command window.

招待指定大模型的格式: ollama run 大模型名称
e.g. ollama run llama3
其他可执行的大模型参考: https://ollama.com/library

这行命令既是下载, 也是运行(如果下载好了)

退出: /bye

ollama后台执行

ollama server


启动一个WebUI 操作界面

docker run -d -p 3001:8088/tcp --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

访问WebUI操作界面 ???

http://localhost:3001

小技巧:

  • 如果要读取网站链接, 要在链接前加一个‘#’.
  • 在 "设置" > "通用" > "系统提示词" 里面输入 "不能说英文, 必须用中文回复用户", 这样儿以后回答的内容都会以中文回答.

安装本地知识库 --- Anything LLM

下载 & 安装

下载地址: https://useanything.com/download

选择(本地-ollama)模型 和 向量数据库

只要ollama服务在后台启用着, AnythingLLM就会识别.


配置&指定本地模型

Ollama模型: llama3

  • Embedding Providers 嵌入提供器(会把上传的文件转为低维向量数据) 我们使用默认的 AnythingLLM Embedder
  • Vector Database 连接向量数据库



  • 前置设置: 输入 workspace 名字, 用于指定知识库服务于那个workspace




上传知识库

注意: 上传的文件名必须是英文, 中文文件名上传会一直读取的状态.


网站生成本地向量数据库

点击嵌入

问: Mackbook Pro多少钱?
How to create a standard SD order in SAP GUI?
不能说英文, 必须用中文回复用户

最好是上传文本性文档, 以便知识库的质量高一些.


深度调整



ollama - Models

Here are the AI models categorized and described in Chinese using Markdown format:

代码生成模型 (Code Generation Models)

Code 34B: 17.8K Pulls 16 Tags Updated 8 months ago
Codegeex4: A versatile model for AI software development scenarios, including code completion.

  • Magicoder 🎩: A family of 7B parameter models trained on 75K synthetic instruction data using OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets.

Chat模型 (Chat Models)

Alfred: A robust conversational model designed to be used for both chat and instruct use cases.
Everythinglm: Uncensored Llama2 based model with support for a 16K context window.
Internlm2: A 7B parameter model tailored for practical scenarios with outstanding reasoning capability.
Megadolphin: MegaDolphin-2.2-120b is a transformation of Dolphin-2.2-70b created by interleaving the model with itself.
Mistrallite: MistralLite is a fine-tuned model based on Mistral with enhanced capabilities of processing long contexts.
Nexus Raven: A 13B instruction tuned model for function calling tasks.
Notus: A 7B chat model fine-tuned with high-quality data and based on Zephyr.
Open-orca-platypus2: Merge of the Open Orca OpenChat model and the Garage-bAInd Platypus 2 model. Designed for chat and code generation.

工具模型 (Tool Models)

DBRX: An open, general-purpose LLM created by Databricks.
Firefunction-v2: An open weights function calling model based on Llama 3, competitive with GPT-4o function calling capabilities.
Llama3-groq-tool-use: A series of models from Groq that represent a significant advancement in open-source AI capabilities for tool use/function calling.
MathΣtral: A 7B model designedx for math reasoning and scientific discovery by Mistral AI.
Nuextract: A 3.8B model fine-tuned on a private high-quality synthetic dataset for information extraction, based on Phi-3.

语言模型 (Language Models)

Goliath: A language model created by combining two fine-tuned Llama 2 70B models into one.
Notux: A top-performing mixture of experts model, fine-tuned with high-quality data.
Stablelm-zephyr: A lightweight chat model allowing accurate, and responsive output without requiring high-end hardware.
其他模型 (Other Models)
Falcon2: An 11B parameters causal decoder-only model built by TII and trained over 5T tokens.
Llama3.1: A new state-of-the-art model.
Wizard Vicuna: A 13B parameter model based on Llama 2 trained by MelodysDreamj.

本地AI大模型共享 --- 内网穿透(外网访问)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容