单细胞数据挖掘实战:文献复现(七)MG 和 Mo/MΦ 评分

单细胞数据挖掘实战:文献复现(一)批量读取数据

单细胞数据挖掘实战:文献复现(二)批量创建Seurat对象及质控

单细胞数据挖掘实战:文献复现(三)降维、聚类和细胞注释

单细胞数据挖掘实战:文献复现(四)细胞比例饼图

单细胞数据挖掘实战:文献复现(五)细胞亚群并可视化

单细胞数据挖掘实战:文献复现(六)标记基因及可视化

这里的MG 和 Mo/MΦ 评分定义为在给定群体中高度表达基因的平均表达水平,主要复现一下Fig. 3

一、加载R包

if(T){
  if(!require(BiocManager))install.packages("BiocManager")
  if(!require(Seurat))install.packages("Seurat")
  if(!require(Matrix))install.packages("Matrix")
  if(!require(ggplot2))install.packages("ggplot2")
  if(!require(cowplot))install.packages("cowplot")
  if(!require(magrittr))install.packages("magrittr")
  if(!require(dplyr))install.packages("dplyr")
  if(!require(purrr))install.packages("purrr")
  if(!require(ggrepel))install.packages("ggrepel")
  if(!require(ggpubr))install.packages("ggpubr")
}

二、添加conditon

table(seu_object$orig.ident)
#GSM4039241-F-ctrl-1  GSM4039242-F-ctrl-2 GSM4039243-F-tumor-1 
#                5151                 4781                 4878 
#GSM4039244-F-tumor-2  GSM4039245-M-ctrl-1  GSM4039246-M-ctrl-2 
#                5467                 4786                 5218 
#GSM4039247-M-tumor-1 GSM4039248-M-tumor-2 
#                4091                 4891 
group <- c(rep("ctrl",times = 5151),
           rep("ctrl",times = 4781),
           rep("tumor",times = 4878),
           rep("tumor",times = 5467),
           rep("ctrl",times = 4786),
           rep("ctrl",times = 5218),
           rep("tumor",times = 4091),
           rep("tumor",times = 4891))
seu_object$condition <- group
#fig3a
DimPlot(seu_object, group.by = "condition" )
1.png

三、按基因表达平均值进行打分

micro_score

col_Micro<-"#53AFE6"
col_Macro<-"#FABF00"

gene_expression_data <- GetAssayData(object = seu_object, slot = "data")
genes_micro01 <- c("Tmem119", "P2ry12", "Cx3cr1", "Olfml3", "Sparc","Gpr34")
gene_expression_data_micro <- gene_expression_data[genes_micro01, ]
seu_object$micro_score <- colMeans(gene_expression_data_micro)
# Figure 3b
#上半部分
FeaturePlot(seu_object, features = "micro_score")
2.png

macro_score

genes_macro01 <- c("Ifitm2", "S100a6", "S100a11", "Lgals3", "Isg15", "Ms4a4c", "Crip1")           
gene_expression_data_macro <- gene_expression_data[genes_macro01, ]
seu_object$macro_score <- colMeans(gene_expression_data_macro)
# Feature Plots
FeaturePlot(seu_object, features = "macro_score")
3.png

Figure 3c

col_CTRL<- "#636775"
col_TUMOR<-"#F44686"

cell_types_labels <- c("MG", "Mo/MΦ")
names(cell_types_labels) <- c("Microglia", "Macrophages")

scores_data <- data.frame(micro01 = seu_object$micro_score, macro01 = seu_object$macro_score, 
                          condition = seu_object$condition,
                          cell_types_3_groups = Idents(seu_object))

MG<-ggplot(scores_data[scores_data$cell_types_3_groups %in% c("MG", "Mo/MΦ"),], 
           aes(x=condition, y= micro01))+
  geom_violin(aes(fill=condition), scale = "area", trim=F, size=0.5)+
  facet_grid(.~cell_types_3_groups, labeller = labeller(cell_types_3_groups=cell_types_labels))+
  xlab("")+
  ylab("MG score")+
  scale_fill_manual(values=c(col_CTRL, col_TUMOR))+
  theme_classic(base_size=14)
MoM<-ggplot(scores_data[scores_data$cell_types_3_groups %in% c("MG", "Mo/MΦ"),], 
            aes(x=condition, y= macro01))+
  geom_violin(aes(fill=condition), scale="area", trim=F, size=0.5)+
  facet_grid(.~cell_types_3_groups, labeller = labeller(cell_types_3_groups = cell_types_labels))+
  xlab("")+
  ylab("MoM score")+
  scale_fill_manual(values=c(col_CTRL, col_TUMOR))+
  theme_classic(base_size=14)
pdf(("fig3b.pdf"), onefile = FALSE, width = 15, height = 15)
ggarrange(MG, MoM, nrow = 2, common.legend=T)
dev.off()
4.png

往期单细胞数据挖掘实战

单细胞数据挖掘实战:文献复现(一)批量读取数据

单细胞数据挖掘实战:文献复现(二)批量创建Seurat对象及质控

单细胞数据挖掘实战:文献复现(三)降维、聚类和细胞注释

单细胞数据挖掘实战:文献复现(四)细胞比例饼图

单细胞数据挖掘实战:文献复现(五)细胞亚群并可视化

单细胞数据挖掘实战:文献复现(六)标记基因及可视化

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容