pyecharts数据可视化

Echarts是一个由百度开源的数据可视化工具,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts诞生啦。

尽管python有自带的matplotlib、seaborn等画图模块,但其绘制出来的是静态图,而pyecharts可以绘制出非常棒的动态效果图,果断入坑!

#关于一些函数的说明
- add() 用于添加图表的数据和设置各种配置项
- show_config() 打印输出图表的所有配置项
- render() 生成 .html 文件
- 支持保存做种格式
   - 对象.render(path='snapshot.html')
   - 对象.render(path='snapshot.png')
   - 对象.render(path='snapshot.pdf')

1、词云图

1.1 英文词云

from pyecharts import WordCloud
name =['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications', 'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp', 'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham', 'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value =[10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud =WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
#wordcloud.show_config()
wordcloud.render(path='./picture/01-词云1-权重词云.html')
1.png
from pyecharts import WordCloud
wordcloud2 =WordCloud(width=1300, height=620)
wordcloud2.add("", name, value, word_size_range=[30, 100], shape='diamond')
wordcloud2.render(path='./picture/01-词云2-变形词云.html')
2.png

1.2 中文词云

from wordcloud import WordCloud, ImageColorGenerator
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
words = ['好看', '不错', '人性', '可以', '值得', '真的', '一部', '感觉', '喜欢', '一般', '演技', '还是',
   '剧情', '一出', '有点', '出好', '好戏', '不是', '没有', '非常', '哈哈', '喜剧', '就是', '一个',
   '现实', '什么', '支持', '还行', '但是', '很多', '觉得', '搞笑', '值得一看', '故事', '看好',
   '这部', '哈哈哈', '失望', '最后', '导演', '自己', '演员', '看完', '社会', '特别', '看到', '不好',
   '比较', '表达', '那么', '作品', '个人', '东西', '思考', '这个', '第一', '不过', '情节',
   '哈哈哈哈', '意思', '一直', '推荐', '一般般', '时候', '开始', '般般', '片子', '知道', '处女',
   '期待', '很棒', '影院', '深度', '反应', '无聊', '可能', '一些', '精彩', '爱情', '这么', '希望',
   '一点', '不知', '有些', '还好', '恐怖', '看着', '没看', '还有', '观看', '后面', '真实', '因为',
   '如果', '出来', '部分', '确实', '我们', '意义', '深刻']

new_worlds = " ".join(words)
# 参照图片
coloring = np.array(Image.open("./temp6.png"))
# simkai.ttf 必填项 识别中文的字体,例:simkai.ttf,
my_wordcloud = WordCloud(background_color="white", max_words=800,
                     mask=coloring, max_font_size=120, random_state=30, scale=2,font_path="./simhei.ttf").generate(new_worlds)

image_colors = ImageColorGenerator(coloring)
plt.imshow(my_wordcloud.recolor(color_func=image_colors))
plt.imshow(my_wordcloud)
plt.axis("off")
plt.show()
# 保存图片
my_wordcloud.to_file('./picture/01-词云3-中文词云.png')
01-词云3-中文词云.png

2、常用统计图

from pyecharts import Line, Bar, Pie, EffectScatter
# 数据
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]

2.1 柱形图

bar = Bar('柱形图', '库存量')
bar.add('服装', attr, v1,  is_label_show=True)
bar.render(path='./picture/02-01柱形图-01柱形图.html')
柱形图.png
bar2 = Bar("显示标记线和标记点")
bar2.add('商家A', attr, v1, mark_point=['avgrage'])
bar2.add('商家B', attr, v2, mark_point=['min', 'max'])
bar2.render(path='./picture/02-01柱形图-02标记点柱形图.html')
显示标记线和标记点.png
bar3 = Bar("水平显示")
bar3.add('商家A', attr, v1)
bar3.add('商家B', attr, v2, is_convert=True)
bar3.render(path='./picture/02-01柱形图3-03水平柱形图.html')
水平显示.png

2.2 折线图

# 普通折线图
line = Line('折线图')
line.add('商家A', attr, v1, mark_point=['max'])
line.add('商家B', attr, v2, mark_point=['min'], is_smooth=True)
line.render(path='./picture/02-02折线图-01折线图.html')
折线图.png
# 阶梯折线图
line2 = Line('阶梯折线图')
line2.add('商家A', attr, v1,  is_step=True, is_label_show=True)
line2.render(path='./picture/02-02折线图-02阶梯折线图.html')
阶梯折线图.png
# 面积折线图
line3 =Line("面积折线图")
line3.add("商家A", attr, v1, is_fill=True, line_opacity=0.2,   area_opacity=0.4, symbol=None, mark_point=['max'])
line3.add("商家B", attr, v2, is_fill=True, area_color='#a3aed5', area_opacity=0.3, is_smooth=True)
line3.render(path='./picture/02-02折线图-03面积折线图.html')
面积折线图.png

2.3 柱形图-折线图

from pyecharts import Bar, Line, Overlap

att = ['A', 'B', 'C', 'D', 'E', 'F']
v3 = [10, 20, 30, 40, 50, 60]
v4 = [38, 28, 58, 48, 78, 68]

bar = Bar("柱形图-折线图")
bar.add('bar', att, v3)
line = Line()
line.add('line', att, v4)

overlap = Overlap()
overlap.add(bar)
overlap.add(line)
overlap.render(path='./picture/02-03柱形图-折线图.html')
柱形图-折线图.png

2.4 饼图

pie = Pie('饼图')
pie.add('芝麻饼', attr, v1, is_label_show=True)
pie.render(path='./picture/02-04饼图-01饼图.html')
饼图.png
pie2 = Pie("饼图-玫瑰图", title_pos='center', width=900)
pie2.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie2.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area', is_legend_show=False, is_label_show=True)
pie2.render(path='./picture/02-04饼图-02玫瑰饼图.html')
饼图-玫瑰图.png

2.5 散点图

  • 静态散点图
from pyecharts import  Scatter
# 散点图
v1 =[10, 20, 30, 40, 50, 60]
v2 =[10, 20, 30, 40, 50, 60]
scatter =Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.render(path='./picture/02-05散点图-01散点图.html')
散点图示例.png
  • 动态散点图
from pyecharts import EffectScatter
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
# 动态散点图
es =EffectScatter("动态散点图")
es.add("商家", v1, v2)
es.render('./picture/02-05散点图-03动态散点图.html')
动态散点图.png
# 动态散点图各种图形
es = EffectScatter("动态散点图各种图形")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5,  effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render(path = "./picture/02-05散点图-04动态散点图各种图形.html")
动态散点图各种图形.png

2.6 多个饼图

from pyecharts import Pie
pie =Pie('各类电影中"好片"所占的比例', "数据来自豆瓣", title_pos='center')
pie.add("", ["剧情", ""], [25, 75], center=[10, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, )
pie.add("", ["奇幻", ""], [24, 76], center=[30, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, legend_pos='left')
pie.add("", ["爱情", ""], [14, 86], center=[50, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["惊悚", ""], [11, 89], center=[70, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["冒险", ""], [27, 73], center=[90, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["动作", ""], [15, 85], center=[10, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["喜剧", ""], [54, 46], center=[30, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["科幻", ""], [26, 74], center=[50, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["悬疑", ""], [25, 75], center=[70, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["犯罪", ""], [28, 72], center=[90, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, is_legend_show=True, legend_top="center")
pie.render(path='./picture/02-06多个饼图.html')
[图片上传中...(柱状图示例.png-39d171-1579450240964-0)]

2.7 多标记柱形图

from pyecharts import Bar
attr =["{}月".format(i) for i in range(1, 13)]
v1 =[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 =[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar =Bar("柱状图示例")
bar.add("蒸发量", attr, v1, mark_line=["average"], mark_point=["max", "min"])
bar.add("降水量", attr, v2, mark_line=["average"], mark_point=["max", "min"])
bar.render(path='./picture/02-07多标记柱形图.html')
柱状图示例.png

3、其他统计图

from pyecharts import Funnel, Gauge, Graph
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 56, 78, 100]
v2 =[55, 60, 16, 20, 15, 80]

3.1 仪表盘

gauge = Gauge("仪表盘")
gauge.add('业务指标', '完成率', 66.66)
gauge.render(path="./picture/03-01仪表盘.html")
仪表盘.png

3.2 漏斗图

funnel = Funnel('漏斗图')
funnel.add('商品', attr, v1, is_label_show=True, label_pos='inside', label_text_color="#fff")
funnel.render(path="./picture/03-02漏斗图.html")
漏斗图.png

3.3 水球图

from pyecharts import Liquid, Polar, Radar
liquid =Liquid("水球图")
liquid.add("Liquid", [0.6])
liquid.render(path='./picture/03-04水球.html')
水球图.png
# 圆形水球
liquid2 =Liquid("水球图示例")
liquid2.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_outline_show=False)
liquid2.render(path='./picture/03-05圆形水球.html')
[图片上传中...(水球图示例-2.png-138824-1579489047969-0)]
# 菱形水球
liquid3 =Liquid("水球图示例")
liquid3.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid3.render(path='./picture/03-06菱形水球.html')
水球图示例-2.png

3.4 极坐标图

# 极坐标
radius =['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar =Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.render(path='./picture/03-07极坐标.html')
极坐标系-堆叠柱状图示例.png

3.5 雷达图

# 雷达图
schema =[ ("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 =[[4300, 10000, 28000, 35000, 50000, 19000]]
v2 =[[5000, 14000, 28000, 31000, 42000, 21000]]
radar =Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False)
radar.render(path='./picture/03-08雷达图.html')
echarts-2.png

4、地图

# 选择自己需要的安装
$ pip install echarts-countries-pypkg
$ pip install echarts-china-provinces-pypkg
$ pip install echarts-china-cities-pypkg
$ pip install echarts-china-counties-pypkg
$ pip install echarts-china-misc-pypkg
$ pip install echarts-united-kingdom-pypkg
from pyecharts import Map, Geo

4.1 世界地图

# 世界地图数据
value = [95.1, 23.2, 43.3, 66.4, 88.5]
attr= ["China", "Canada", "Brazil", "Russia", "United States"]
map0 = Map("世界地图示例", width=1200, height=600)
map0.add("世界地图", attr, value, maptype="world",  is_visualmap=True, visual_text_color='#000')
map0.render(path="./picture/04-01世界地图.html")
世界地图示例.png

4.2 中国地图

# 省和直辖市
province_distribution = {'河南': 45.23, '北京': 37.56, '河北': 21, '辽宁': 12, '江西': 6, '上海': 20, '安徽': 10, '江苏': 16, '湖南': 9, '浙江': 13, '海南': 2, '广东': 22, '湖北': 8, '黑龙江': 11, '澳门': 1, '陕西': 11, '四川': 7, '内蒙古': 3, '重庆': 3, '云南': 6, '贵州': 2, '吉林': 3, '山西': 12, '山东': 11, '福建': 4, '青海': 1, '舵主科技,质量保证': 1, '天津': 1, '其他': 1}
provice=list(province_distribution.keys())
values=list(province_distribution.values())
map = Map("中国地图",'中国地图', width=1200, height=600)
map.add("", provice, values, visual_range=[0, 50],  maptype='china', is_visualmap=True,
    visual_text_color='#000')
map.render(path="./picture/04-02中国地图.html")
中国地图.png

4.3 北京地图

city_keys0= ['丰台区','东城区','大兴区', '海淀区', '西城区' , '朝阳区', '顺义区','平谷区','石景山区','昌平区','密云区','房山区','延庆区','门头沟区','通州区']
city_values0= [52, 20, 31, 57, 22, 49,5,5,2,5,1,5,3,2,1]
map2 = Map("北京地图",'北京', width=1200, height=600)
map2.add('北京', city_keys0, city_values0, visual_range=[1, 10], maptype='北京', is_visualmap=True, visual_text_color='#000')
map2.render(path="./picture/04-04北京地图.html")
北京地图.png

4.4 空气质量热力图

data = [
("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25)]
geo = Geo("全国主要城市空气质量热力图", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("空气质量热力图", attr, value, visual_range=[0, 25], type='heatmap',visual_text_color="#fff", symbol_size=15, is_visualmap=True, is_roam=False)
geo.render(path="./picture/04-05空气质量热力图.html")
全国主要城市空气质量热力图.png

4.5 空气质量评分图

# 空气质量评分
indexs = ['上海', '北京', '合肥', '哈尔滨', '广州', '成都', '无锡', '杭州', '武汉', '深圳', '西安', '郑州', '重庆', '长沙']
values = [4.07, 1.85, 4.38, 2.21, 3.53, 4.37, 1.38, 4.29, 4.1, 1.31, 3.92, 4.47, 2.40, 3.60]
geo = Geo("全国主要城市空气质量评分", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59')
geo.add("空气质量评分", indexs, values, type="effectScatter", is_random=True, effect_scale=5, visual_range=[0, 5],visual_text_color="#fff", symbol_size=15, is_visualmap=True, is_roam=False)
geo.render(path="./picture/04-06空气质量评分.html")
全国主要城市空气质量评分.png

4.6 微信好友分布图

from pyecharts import Geo, Map
province_distribution = {'河南': 45, '北京': 97, '河北': 21, '辽宁': 12, '江西': 6, '上海': 20, '安徽': 10, '江苏': 16, '湖南': 9, '浙江': 13, '海南': 2, '广东': 22, '湖北': 8, '黑龙江': 11, '澳门': 1, '陕西': 11, '四川': 7, '内蒙古': 3, '重庆': 3, '云南': 6, '贵州': 2, '吉林': 3, '山西': 12, '山东': 11, '福建': 4, '青海': 1, '舵主科技,质量保证': 1, '天津': 1, '其他': 1}
province_keys=province_distribution.keys()
province_values=province_distribution.values()
map = Map("我的微信好友分布", "@ZYH",width=1200, height=600)
map.add("", province_keys, province_values, maptype='china', is_visualmap=True,visual_text_color='#000')
map.render(path="./picture/04-07微信好友分布图.html")
我的微信好友分布-3.png

4.7 空气质量散点图

from pyecharts import Geo
data = [
   ("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
   ("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
   ("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25),
   ("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("厦门", 26),
   ("汕尾", 26),("潮州", 26),("丹东", 27),("太仓", 27),("曲靖", 27),("烟台", 28),
   ("福州", 29),("瓦房店", 30),("即墨", 30),("抚顺", 31),("玉溪", 31),("张家口", 31),
   ("阳泉", 31),("莱州", 32),("湖州", 32),("汕头", 32),("昆山", 33),("宁波", 33),
   ("湛江", 33),("揭阳", 34),("荣成", 34),("连云港", 35),("葫芦岛", 35),("常熟", 36),
   ("东莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南宁", 37),("营口", 37),
   ("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38),
   ("延安", 38),("太原", 39),("清远", 39),("中山", 39),("昆明", 39),("寿光", 40),
   ("盘锦", 40),("长治", 41),("深圳", 41),("珠海", 42),("宿迁", 43),("咸阳", 43),
   ("铜川", 44),("平度", 44),("佛山", 44),("海口", 44),("江门", 45),("章丘", 45),
   ("肇庆", 46),("大连", 47),("临汾", 47),("吴江", 47),("石嘴山", 49),("沈阳", 50),
   ("苏州", 50),("茂名", 50),("嘉兴", 51),("长春", 51),("胶州", 52),("银川", 52),
   ("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54),
   ("自贡", 56),("吉林", 56),("阳江", 57),("泸州", 57),("西宁", 57),("宜宾", 58),
   ("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59),
   ("宜兴", 59),("北海", 60),("西安", 61),("金坛", 62),("东营", 62),("牡丹江", 63),
   ("遵义", 63),("绍兴", 63),("扬州", 64),("常州", 64),("潍坊", 65),("重庆", 66),
   ("台州", 67),("南京", 67),("滨州", 70),("贵阳", 71),("无锡", 71),("本溪", 71),
   ("克拉玛依", 72),("渭南", 72),("马鞍山", 72),("宝鸡", 72),("焦作", 75),("句容", 75),
   ("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84),
   ("枣庄", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧阳", 86),("库尔勒", 86),
   ("安阳", 90),("开封", 90),("济南", 92),("德阳", 93),("温州", 95),("九江", 96),
   ("邯郸", 98),("临安", 99),("兰州", 99),("沧州", 100),("临沂", 103),("南充", 104),
   ("天津", 105),("富阳", 106),("泰安", 112),("诸暨", 112),("郑州", 113),("哈尔滨", 114),
   ("聊城", 116),("芜湖", 117),("唐山", 119),("平顶山", 119),("邢台", 119),("德州", 120),
   ("济宁", 120),("荆州", 127),("宜昌", 130),("义乌", 132),("丽水", 133),("洛阳", 134),
   ("秦皇岛", 136),("株洲", 143),("石家庄", 147),("莱芜", 148),("常德", 152),("保定", 153),
   ("湘潭", 154),("金华", 157),("岳阳", 169),("长沙", 175),("衢州", 177),("廊坊", 193),
   ("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)]

geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff",
         title_pos="center", width=1200,
         height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], visual_text_color="#fff",
       symbol_size=15, is_visualmap=True)
geo.render(path="./picture/04-08空气质量散点图.html")
全国主要城市空气质量.png

4.8 空气质量热力图2

from pyecharts import Geo

data = [
    ("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
    ("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
    ("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25),
    ("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("厦门", 26),
    ("汕尾", 26),("潮州", 26),("丹东", 27),("太仓", 27),("曲靖", 27),("烟台", 28),
    ("福州", 29),("瓦房店", 30),("即墨", 30),("抚顺", 31),("玉溪", 31),("张家口", 31),
    ("阳泉", 31),("莱州", 32),("湖州", 32),("汕头", 32),("昆山", 33),("宁波", 33),
    ("湛江", 33),("揭阳", 34),("荣成", 34),("连云港", 35),("葫芦岛", 35),("常熟", 36),
    ("东莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南宁", 37),("营口", 37),
    ("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38),
    ("延安", 38),("太原", 39),("清远", 39),("中山", 39),("昆明", 39),("寿光", 40),
    ("盘锦", 40),("长治", 41),("深圳", 41),("珠海", 42),("宿迁", 43),("咸阳", 43),
    ("铜川", 44),("平度", 44),("佛山", 44),("海口", 44),("江门", 45),("章丘", 45),
    ("肇庆", 46),("大连", 47),("临汾", 47),("吴江", 47),("石嘴山", 49),("沈阳", 50),
    ("苏州", 50),("茂名", 50),("嘉兴", 51),("长春", 51),("胶州", 52),("银川", 52),
    ("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54),
    ("自贡", 56),("吉林", 56),("阳江", 57),("泸州", 57),("西宁", 57),("宜宾", 58),
    ("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59),
    ("宜兴", 59),("北海", 60),("西安", 61),("金坛", 62),("东营", 62),("牡丹江", 63),
    ("遵义", 63),("绍兴", 63),("扬州", 64),("常州", 64),("潍坊", 65),("重庆", 66),
    ("台州", 67),("南京", 67),("滨州", 70),("贵阳", 71),("无锡", 71),("本溪", 71),
    ("克拉玛依", 72),("渭南", 72),("马鞍山", 72),("宝鸡", 72),("焦作", 75),("句容", 75),
    ("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84),
    ("枣庄", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧阳", 86),("库尔勒", 86),
    ("安阳", 90),("开封", 90),("济南", 92),("德阳", 93),("温州", 95),("九江", 96),
    ("邯郸", 98),("临安", 99),("兰州", 99),("沧州", 100),("临沂", 103),("南充", 104),
    ("天津", 105),("富阳", 106),("泰安", 112),("诸暨", 112),("郑州", 113),("哈尔滨", 114),
    ("聊城", 116),("芜湖", 117),("唐山", 119),("平顶山", 119),("邢台", 119),("德州", 120),
    ("济宁", 120),("荆州", 127),("宜昌", 130),("义乌", 132),("丽水", 133),("洛阳", 134),
    ("秦皇岛", 136),("株洲", 143),("石家庄", 147),("莱芜", 148),("常德", 152),("保定", 153),
    ("湘潭", 154),("金华", 157),("岳阳", 169),("长沙", 175),("衢州", 177),("廊坊", 193),
    ("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)]

geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff",
          title_pos="center", width=1000,
          height=500, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="heatmap", is_visualmap=True, visual_range=[0, 300],
        visual_text_color='#fff')
geo.render(path="./picture/04-09空气质量热力图2.html")

全国主要城市空气质量-2.png

4.9 单程航线图

from pyecharts import GeoLines, Style

style = Style(
    title_top="#fff",
    title_pos = "center",
    width=1000,
    height=500,
    background_color="#404a59"
)

style_geo = style.add(
    is_label_show=True,
    line_curve=0.2,#线条曲度
    line_opacity=0.6,
    legend_text_color="#eee",#图例文字颜色
    legend_pos="right",#图例位置
    geo_effect_symbol="plane",#特效形状
    geo_effect_symbolsize=15,#特效大小
    label_color=['#a6c84c', '#ffa022', '#46bee9'],
    label_pos="right",
    label_formatter="{b}",#//标签内容格式器
    label_text_color="#eee",
)

data_guangzhou = [
    ["广州", "上海"],
    ["广州", "北京"],
    ["广州", "南京"],
    ["广州", "重庆"],
    ["广州", "兰州"],
    ["广州", "杭州"]
]
geolines = GeoLines("GeoLines 示例", **style.init_style)
geolines.add("从广州出发", data_guangzhou, **style_geo)
geolines.render(path="./picture/04-10单程航线图.html")
GeoLines 示例.png

4.10 双程航线图

from pyecharts import GeoLines, Style

style = Style(
    title_top="#fff",
    title_pos = "center",
    width=1000,
    height=500,
    background_color="#404a59"
)

style_geo = style.add(
    is_label_show=True,
    line_curve=0.2,
    line_opacity=0.6,
    legend_text_color="#eee",
    legend_pos="right",
    geo_effect_symbol="plane",
    geo_effect_symbolsize=15,
    label_color=['#a6c84c', '#ffa022', '#46bee9'],
    label_pos="right",
    label_formatter="{b}",
    label_text_color="#eee",
    legend_selectedmode="single", #指定单例模式
)

data_beijing = [
    ["北京", "上海"],
    ["北京", "广州"],
    ["北京", "南京"],
    ["北京", "重庆"],
    ["北京", "兰州"],
    ["北京", "杭州"]
]

data_guangzhou = [
    ["广州", "上海"],
    ["广州", "北京"],
    ["广州", "南京"],
    ["广州", "重庆"],
    ["广州", "兰州"],
    ["广州", "杭州"]
]
geolines = GeoLines("GeoLines 示例", **style.init_style)
geolines.add("从广州出发", data_guangzhou, **style_geo)
geolines.add("从北京出发", data_beijing, **style_geo)
geolines.render(path="./picture/04-11双程航线图.html")
GeoLines 示例.png
GeoLines 示例-2.png

参考资料:
官方文档:https://pyecharts.org
简书作者:Python数据分析实战

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容