Introduction (1 class)
Basic concepts.
Supervised learning. (7 classes)
Supervised learning setup. LMS.
Logistic regression. Perceptron. Exponential family.
Generative learning algorithms. Gaussian discriminant analysis. Naive Bayes.
Support vector machines.
Model selection and feature selection.
Ensemble methods: Bagging, boosting.
Evaluating and debugging learning algorithms.
Learning theory. (3 classes)
Bias/variance tradeoff. Union and Chernoff/Hoeffding bounds.
VC dimension. Worst case (online) learning.
Practical advice on how to use learning algorithms.
Unsupervised learning. (5 classes)
Clustering. K-means.
EM. Mixture of Gaussians.
Factor analysis.
PCA (Principal components analysis).
ICA (Independent components analysis).
Reinforcement learning and control. (4 classes)
MDPs. Bellman equations.
Value iteration and policy iteration.
Linear quadratic regulation (LQR). LQG.
Q-learning. Value function approximation.
Policy search. Reinforce. POMDPs.
Syllabus课程大纲
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
推荐阅读更多精彩内容
- 宫保肉丁,又是一道很多人爱吃,但拿捏不好的菜。食材不复杂,只是十分常见的猪肉和花生米。难就难在味型的把握上,因为这...
- 时间:12月16日- 12月17日 地点:浦东新区世博大道1200号 梅赛德斯-奔驰文化中心 费用:380 - 1...