《机器学习》-KNN源码解析

手撕KNN算法

对未知类别属性的数据集中的每个点依次执行以下操作:
(1) 计算已知类别数据集中的点与当前点之间的距离;
(2) 按照距离递增次序排序;
(3) 选取与当前点距离最小的k个点;
(4) 确定前k个点所在类别的出现频率;
(5) 返回前k个点出现频率最高的类别作为当前点的预测分类

from numpy import *
import operator
from os import listdir

def createDataSet():
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    print(tile(inX, (dataSetSize, 1)))#主要是为了可以让【0,0】依次跟所有的点相减
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet#这一步就是,计算每个点跟【0,0】的距离差
    print(diffMat)
    sqDiffMat = diffMat ** 2#用欧氏距离公式,差值进行平方之和
    sqDistances = sqDiffMat.sum(axis=1)#对矩阵的每一行求和

    distances = sqDistances ** 0.5#对每一行的值求开方
    sortedDistIndicies = distances.argsort()#根据argsort()函数是将x中的元素从小到大排列,提取其对应的index(索引)索引进行排序
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]#得到离【0,0】值最近的距离是B类别
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1#代表这个标签加一
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

group, labels = createDataSet()
print(group, labels)
classify0([0,0], group, labels, 3)
使用 k-近邻算法改进约会网站的配对效果

(1) 收集数据:提供文本文件。
(2) 准备数据:使用Python解析文本文件。
(3) 分析数据:使用Matplotlib画二维扩散图。
(4) 训练算法:此步骤不适用于k-近邻算法。
(5) 测试算法:使用海伦提供的部分数据作为测试样本。
测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类
与实际类别不同,则标记为一个错误。
(6) 使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否
为自己喜欢的类型。

1.处理数据解析

def file2matrix(filename):
    love_dictionary={'largeDoses':3, 'smallDoses':2, 'didntLike':1}
    fr = open(filename)
    arrayOLines = fr.readlines()#拿到所有行数据
    numberOfLines = len(arrayOLines)            #get the number of lines in the file
    returnMat = zeros((numberOfLines,3))#构建一个1000行3列的数组,俗称三维数组
    print(returnMat)#prepare matrix to return
    classLabelVector = []                       #prepare labels return
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]#可以理解为插入,每一行的数据的前三个,插入到哪个三维数组里
        print(returnMat[index,:])
        if(listFromLine[-1].isdigit()):
            classLabelVector.append(int(listFromLine[-1]))
        else:
            classLabelVector.append(love_dictionary.get(listFromLine[-1]))#找到对应的字典的数填进去
        index += 1
    return returnMat,classLabelVector
path = r'F:\2022\机器学习实战源码\machine_learning_in_action_py3-master\src\ch02\datingTestSet.txt'
#数据可以网上搜
returnMat,classLabelVector = file2matrix(path)

准备数据:归一化数值

#在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值
def autoNorm(dataSet):
    minVals = dataSet.min(0)#把这个三维数组的每一列的最小值找出来,拼成一个新的数组【0,0,0.001156】
    maxVals = dataSet.max(0)#拿到这个三维数组的最大值拼成一个新的数组【[9.1273000e+04 2.0919349e+01 1.6955170e+00]】
    ranges = maxVals - minVals#【[9.1273000e+04 2.0919349e+01 1.6943610e+00]】
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))#每一行的值减去最小值
    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
    return normDataSet, ranges, minVals
normat , ranges , minvals = autoNorm(returnMat)

预测

def classifyPerson(path):
    resultList = ['not at all', 'in small doses', 'in large doses']
    percentTats = float(input(\
                                  "percentage of time spent playing video games?"))
    ffMiles = float(input("frequent flier miles earned per year?"))
    iceCream = float(input("liters of ice cream consumed per year?"))
 
    datingDataMat, datingLabels = file2matrix(path)
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream, ])
    classifierResult = classify0((inArr - \
                                  minVals)/ranges, normMat, datingLabels, 3)
    print("You will probably like this person: {}".format(resultList[classifierResult - 1]))
path2 =  r'F:\2022\机器学习实战源码\machine_learning_in_action_py3-master\src\ch02\datingTestSet2.txt'
classifyPerson(path2)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,039评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,426评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,417评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,868评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,892评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,692评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,416评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,326评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,782评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,957评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,102评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,790评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,442评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,996评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,113评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,332评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,044评论 2 355

推荐阅读更多精彩内容