从Java程序员的角度理解加密的那些事

前言

在我们日常的程序开发中,或多或少会遇到一些加密/解密的场景,比如在一些接口调用的过程中,我们(Client)不仅仅需要传递给接口服务(Server)必要的业务参数,还得提供Signature(数字签名)以供Server端进行校验(是否是非法请求?是否有篡改?);Server端进行处理后返回给Client的响应结果中还会包含Signature,以供校验。本篇博客将从Java程序员的角度出发,通俗理解加密、解密的那些事!

理解一些术语:单向、对称、非对称

假设场景:client需要发送一段消息"hello world"给server

单向加密

所谓单向加密是指client将消息"hello world"加密的过程不需要server参与,即加密不依赖server;同时,server将受到的消息解密成"hello world"的过程也不依赖client。

例如,咱们知道的MD5就是一种单向加密算法,是一种不可逆的算法。

对称加密

client加密消息需要依赖server,双方可以相互解密。

非对称加密

client加密消息需要依赖server,但是双方不能相互解密。

不可不知的Base64编码

先看一段代码:

BASE64编码/解码测试

需要注意的是,BASE64Encoder和BASE64Decoder并不是官方JDK实现类,如果需要使用,需要引入sun.misc包。

严格来说,BASE64并不是一种加密算法,而是一种编码格式。说白了,BASE64的作用是,将人肉眼可以识别的信息,转换为不可以识别的数据,并不是对数据进行加密,只是给数据换了一身衣服而已。(骗的了你的眼睛,骗不了程序)

原数据越大,那么BASE64生成的结果就越大,这是需要额外注意的点。

BASE64的生成结果始终由64个字符来组成。

由于BASE64的编码特性,在一些场景中有应用,比如有些网站会把图片的二进制流编码成BASE64传递给客户端;比如有些邮件服务器会将邮件的附件直接编码成BASE64连同邮件内容一起发送;比如在URL中有中文需要传递,可以先将中文进行BASE64编码,来避免传输过程中的乱码。

使用广泛的MD5

MD5,即Message Digest,信息摘要算法第5版。比如在和微信支付、支付宝支付接口交互的过程中,你就可以选择MD5算法来加密。

先来看一段代码:

MD5

MD5破解?

如前文所说,MD5是一种不可逆的算法,但是为什么存在破解呢?其实,所谓的破解,并不是真正的破解,只不过是大数据查询的一个碰撞而已。比如,有一台服务器存储了大量key以及key的MD5编码的信息,那么就可以拿着数据去进行比对。

那么实际场景中,一般我们如何防止这种暴力破解呢?

答案:进行二次加密。

比如client在调用server接口的时候,server分配给client一个Token,每次client调用server接口的时候,需要对Token以及业务参数一起进行MD5加密。其实这就是所谓的一个“加盐”的过程。

MD5的一些特性分析

第一,我们知道BASE64随着原数据的增大而导致编码后的结果长度变大,而MD5结果的长度值是固定的,就是32位。也就是MD5的压缩性很好。

第二,从原数据计算出MD5是一个快速且容易的过程,不可逆。

第三,要找到2个不同的数据,它们计算后的MD5一致,这是非常困难的。这是MD5的弱碰撞性,也即是说想要伪造数据太困难了。

第四,对原数据的任何修改,哪怕只改动一个字节数据,也会导致MD5值发生很大变化,说明MD5的抗修改性非常好,非常适合密码、业务数据校验、文件比对等。

了解SHA

SHA,即Security Hash Algorithm,安全散列算法,比如,我们的程序开发完毕,我们发布的时候,想指定的人才可以使用,该怎么办呢?这个时候就可以考虑使用SHA算法。SHA是公认的比MD5更加安全的加密算法,在数字签名领域应用广泛。

好了,到这里,初步介绍了下和咱们JAVA程序员有关的一些加密的知识,重点介绍了BASE64和MD5,加密算法的水太深了,欢迎大家拍砖指教,^_^

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容