一、 DoubleDQN
相当于把不同的DQN代码进行融合得到的效果

彩虹DQN

DQN会过高的评估自己,Q 值评估会比较高
随着游戏的进行, 期望的 Q 会越来越大, 不利于网络训练。我们看下 DQN 以及 DoubleDQN 的目标函数, 唯一区别就是加入
-
DQN target Value:
-
DoubleDQN target value:
至于模型为什么会产生高估的问题, 下面一张图可以清晰的进行解释:
产生高估的原因
DoubleDQN
代码如下所示(来源:【强化学习】双深度Q网络(DDQN)求解倒立摆问题 + Pytorch代码实战):
import argparse
import datetime
import time
import math
import torch.optim as optim
import gym
from torch import nn
# 这里需要改成自己的RL_Utils.py文件的路径
from Python.ReinforcementLearning.EasyRL.RL_Utils import *
# Q网络(3层全连接网络)
class MLP(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=128):
""" 初始化q网络,为全连接网络
input_dim: 输入的特征数即环境的状态维度
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim, hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
# 经验回放缓存区
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
# DDQN智能体对象
class DDQN:
def __init__(self, model, memory, cfg):
self.n_actions = cfg['n_actions']
self.device = torch.device(cfg['device'])
self.gamma = cfg['gamma']
## e-greedy 探索策略参数
self.sample_count = 0 # 采样次数
self.epsilon = cfg['epsilon_start']
self.sample_count = 0
self.epsilon_start = cfg['epsilon_start']
self.epsilon_end = cfg['epsilon_end']
self.epsilon_decay = cfg['epsilon_decay']
self.batch_size = cfg['batch_size']
self.policy_net = model.to(self.device)
self.target_net = model.to(self.device)
# 初始化的时候,目标Q网络和估计Q网络相等,将策略网络的参数复制给目标网络
self.target_net.load_state_dict(self.policy_net.state_dict())
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
self.memory = memory
self.update_flag = False
# 训练过程采样:e-greedy policy
def sample_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
if random.random() > self.epsilon:
return self.predict_action(state)
else:
action = random.randrange(self.n_actions)
return action
# 测试过程:以最大Q值选取动作
def predict_action(self, state):
with torch.no_grad():
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item()
return action
def update(self):
# 当经验缓存区没有满的时候,不进行更新
if len(self.memory) < self.batch_size:
return
else:
if not self.update_flag:
print("Begin to update!")
self.update_flag = True
# 从经验缓存区随机取出一个batch的数据
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
# 将数据转化成Tensor格式
state_batch = torch.tensor(np.array(state_batch), device=self.device,
dtype=torch.float) # shape(batchsize,n_states)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(
1) # shape(batchsize,1)
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device,
dtype=torch.float) # shape(batchsize,n_states)
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
# 计算Q估计
q_value_batch = self.policy_net(state_batch).gather(dim=1,
index=action_batch) # shape(batchsize,1),requires_grad=True
# DDQN和DQN不同之处!DDQN先用policy_net预测处最大的动作,然后再用target_net预测其Q值
# next_max_q_value_batch = self.policy_net(next_state_batch).max(1)[0].detach().unsqueeze(1)
next_q_value_batch = self.policy_net(next_state_batch)
next_target_value_batch = self.target_net(next_state_batch) # type = Tensor , shape([batch_size, n_actions])
# gather函数的功能可以解释为根据 index 参数(即是索引)返回数组里面对应位置的值 , 第一个参数为1代表按列索引,为0代表按行索引
# unsqueeze函数起到了升维的作用,例如 torch.Size([6]):tensor([0, 1, 2, 3, 4, 5]).unsqueeze(0) => torch.Size([1, 6])
# torch.max(tensorData,dim) 返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。
# .detach(): 输入一个张量,返回一个不具有梯度的张量(返回的张量将永久失去梯度,即使修改其requires_grad属性也无法改变)
next_max_q_value_batch = next_target_value_batch.gather(1, torch.max(next_q_value_batch, 1)[1].unsqueeze(1))
# 计算Q现实
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch * (1 - done_batch)
# 计算损失函数MSE(Q估计,Q现实)
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch)
# 梯度下降
self.optimizer.zero_grad()
loss.backward()
# 限制梯度的范围,以避免梯度爆炸
for param in self.policy_net.parameters():
param.grad.data.clamp_(-1.0, 1.0)
self.optimizer.step()
def save_model(self, path):
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(self.target_net.state_dict(), f"{path}/checkpoint.pt")
def load_model(self, path):
self.target_net.load_state_dict(torch.load(f"{path}/checkpoint.pt"))
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
param.data.copy_(target_param.data)
# 训练函数
def train(arg_dict, env, agent):
# 开始计时
startTime = time.time()
print(f"环境名: {arg_dict['env_name']}, 算法名: {arg_dict['algo_name']}, Device: {arg_dict['device']}")
print("开始训练智能体......")
rewards = []
steps = []
for i_ep in range(arg_dict["train_eps"]):
ep_reward = 0
ep_step = 0
state = env.reset()
for _ in range(arg_dict['ep_max_steps']):
# 画图
if arg_dict['train_render']:
env.render()
ep_step += 1
action = agent.sample_action(state)
next_state, reward, done, _ = env.step(action)
agent.memory.push(state, action, reward,
next_state, done)
state = next_state
agent.update()
ep_reward += reward
if done:
break
# 目标网络更新
if (i_ep + 1) % arg_dict["target_update"] == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
steps.append(ep_step)
rewards.append(ep_reward)
if (i_ep + 1) % 10 == 0:
print(f'Episode: {i_ep + 1}/{arg_dict["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
print('训练结束 , 用时: ' + str(time.time() - startTime) + " s")
# 关闭环境
env.close()
return {'episodes': range(len(rewards)), 'rewards': rewards}
# 测试函数
def test(arg_dict, env, agent):
startTime = time.time()
print("开始测试智能体......")
print(f"环境名: {arg_dict['env_name']}, 算法名: {arg_dict['algo_name']}, Device: {arg_dict['device']}")
rewards = []
steps = []
for i_ep in range(arg_dict['test_eps']):
ep_reward = 0
ep_step = 0
state = env.reset()
for _ in range(arg_dict['ep_max_steps']):
# 画图
if arg_dict['test_render']:
env.render()
ep_step += 1
action = agent.predict_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
print(f"Episode: {i_ep + 1}/{arg_dict['test_eps']},Reward: {ep_reward:.2f}")
print("测试结束 , 用时: " + str(time.time() - startTime) + " s")
env.close()
return {'episodes': range(len(rewards)), 'rewards': rewards}
# 创建环境和智能体
def create_env_agent(arg_dict):
# 创建环境
env = gym.make(arg_dict['env_name'])
# 设置随机种子
all_seed(env, seed=arg_dict["seed"])
# 获取状态数
try:
n_states = env.observation_space.n
except AttributeError:
n_states = env.observation_space.shape[0]
# 获取动作数
n_actions = env.action_space.n
print(f"状态数: {n_states}, 动作数: {n_actions}")
# 将状态数和动作数加入算法参数字典
arg_dict.update({"n_states": n_states, "n_actions": n_actions})
# 实例化智能体对象
# Q网络模型
model = MLP(n_states, n_actions, hidden_dim=arg_dict["hidden_dim"])
# 回放缓存区对象
memory = ReplayBuffer(arg_dict["memory_capacity"])
# 智能体
agent = DDQN(model, memory, arg_dict)
# 返回环境,智能体
return env, agent
if __name__ == '__main__':
# 防止报错 OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# 获取当前路径
curr_path = os.path.dirname(os.path.abspath(__file__))
# 获取当前时间
curr_time = datetime.datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
# 相关参数设置
parser = argparse.ArgumentParser(description="hyper parameters")
parser.add_argument('--algo_name', default='DDQN', type=str, help="name of algorithm")
parser.add_argument('--env_name', default='CartPole-v0', type=str, help="name of environment")
parser.add_argument('--train_eps', default=200, type=int, help="episodes of training")
parser.add_argument('--test_eps', default=20, type=int, help="episodes of testing")
parser.add_argument('--ep_max_steps', default=100000, type=int,
help="steps per episode, much larger value can simulate infinite steps")
parser.add_argument('--gamma', default=0.95, type=float, help="discounted factor")
parser.add_argument('--epsilon_start', default=0.95, type=float, help="initial value of epsilon")
parser.add_argument('--epsilon_end', default=0.01, type=float, help="final value of epsilon")
parser.add_argument('--epsilon_decay', default=500, type=int,
help="decay rate of epsilon, the higher value, the slower decay")
parser.add_argument('--lr', default=0.0001, type=float, help="learning rate")
parser.add_argument('--memory_capacity', default=100000, type=int, help="memory capacity")
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--target_update', default=4, type=int)
parser.add_argument('--hidden_dim', default=256, type=int)
parser.add_argument('--device', default='cpu', type=str, help="cpu or cuda")
parser.add_argument('--seed', default=520, type=int, help="seed")
parser.add_argument('--show_fig', default=False, type=bool, help="if show figure or not")
parser.add_argument('--save_fig', default=True, type=bool, help="if save figure or not")
parser.add_argument('--train_render', default=False, type=bool,
help="Whether to render the environment during training")
parser.add_argument('--test_render', default=True, type=bool,
help="Whether to render the environment during testing")
args = parser.parse_args()
default_args = {'result_path': f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
'model_path': f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
}
# 将参数转化为字典 type(dict)
arg_dict = {**vars(args), **default_args}
print("算法参数字典:", arg_dict)
# 创建环境和智能体
env, agent = create_env_agent(arg_dict)
# 传入算法参数、环境、智能体,然后开始训练
res_dic = train(arg_dict, env, agent)
print("算法返回结果字典:", res_dic)
# 保存相关信息
agent.save_model(path=arg_dict['model_path'])
save_args(arg_dict, path=arg_dict['result_path'])
save_results(res_dic, tag='train', path=arg_dict['result_path'])
plot_rewards(res_dic['rewards'], arg_dict, path=arg_dict['result_path'], tag="train")
# =================================================================================================
# 创建新环境和智能体用来测试
print("=" * 300)
env, agent = create_env_agent(arg_dict)
# 加载已保存的智能体
agent.load_model(path=arg_dict['model_path'])
res_dic = test(arg_dict, env, agent)
save_results(res_dic, tag='test', path=arg_dict['result_path'])
plot_rewards(res_dic['rewards'], arg_dict, path=arg_dict['result_path'], tag="test")
二、 Dueling-DQN

上述图表明, 我 w*x 只能一一匹配, 但是不能举一反三, 这边想的是如果有一个, 可以对上述的参数都产生影响,那就很好了, 也就是说一个偏置就够了, 下面的
可以起到全局控制的作用。







代码如下所示强化学习代码实战-06 Dueling DQN 算法:
import random
import gym
import torch
import numpy as np
from matplotlib import pyplot as plt
from IPython import display
env = gym.make("Pendulum-v0")
# 智能体状态
state = env.reset()
# 动作空间
actions = env.action_space
print(state, actions)
# 打印游戏
# plt.imshow(env.render(mode='rgb_array'))
# plt.show()
"""重新定义策略价值网络Q, 比DQN性能更优"""
class VAnet(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Sequential(torch.nn.Linear(3, 128),
torch.nn.ReLU())
self.fc_A = torch.nn.Linear(128, 11)
self.fc_V = torch.nn.Linear(128, 1)
def forward(self, x):
A = self.fc_A(self.fc(x))
V = self.fc_V(self.fc(x))
A_mean = A.mean(dim=1).reshape(-1, 1)
A = A - A_mean
# Q值由A和V求和得到
Q = A + V
return Q
# 定义动作模型(策略网络)
model = VAnet()
# 经验网络,评估一个动作的分数(目标网络)
next_model = VAnet()
# model的参数赋予next_model
next_model.load_state_dict(model.state_dict())
# 得到一个动作
def get_action(state):
"""state: agent所处的状态。由于是连续动作,做离散化操作"""
# 走神经网络NN,得到分值最大的那个动作。转为tensor数据
state = torch.FloatTensor(state).reshape(1, 3)
action = model(state).argmax().item()
if random.random() < 0.01:
action = random.choice(range(11))
# 离散动作连续化
action_continuous = action
action_continuous /= 10
action_continuous *= 4
action_continuous -= 2
return action, action_continuous
# 数据池
datas = []
def update_data():
"""加入新的N条数据,删除最老的M条数据"""
count = len(datas)
while len(datas) - count < 200:
# 一直追加数据,尽可能多的获取环境状态
state = env.reset()
done = False
while not done:
# 由初始状态开始得到一个动作
action, action_continuous = get_action(state)
next_state, reward, done, _ = env.step([action_continuous])
datas.append((state, action, reward, next_state, done))
# 更新状态
state = next_state
# 此时新数据集中比原来多了大约200条样本,如果超过了最大容量,删除最开始数据
update_count = len(datas) - count
while len(datas) > 5000:
datas.pop(0)
return update_count
# 从数据池中采样
def get_sample():
# batch size = 64, 数据类型转换为Tensor
samples = random.sample(datas, 64)
state = torch.FloatTensor([i[0] for i in samples]).reshape(-1, 3)
action = torch.LongTensor([i[1] for i in samples]).reshape(-1, 1)
reward = torch.FloatTensor([i[2] for i in samples]).reshape(-1, 1)
next_state = torch.FloatTensor([i[3] for i in samples]).reshape(-1, 3)
done = torch.LongTensor([i[4] for i in samples]).reshape(-1, 1)
return state, action, reward, next_state, done
# 获取动作价值
def get_value(state, action):
"""根据网络输出找到对应动作的得分,使用策略网络"""
action_value = model(state)
action_value = action_value.gather(dim=1, index=action)
return action_value
# 获取学习目标值
def get_target(next_state, reward, done):
"""使用next_state和reward计算真实得分。对价值的估计,使用目标网络"""
with torch.no_grad():
target = next_model(next_state)
target = target.max(dim=1)[0].reshape(-1, 1)
target *= (1 - done) # 游戏结束的状态,没有奖励
target = reward + target * 0.98
return target
# 一局游戏得分测试
def test():
reward_sum = 0
state = env.reset()
done = False
while not done:
_, action_continuous = get_action(state)
next_state, reward, done, _ = env.step([action_continuous])
reward_sum += reward
state = next_state
return reward_sum
def train():
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=2e-3)
loss_fn = torch.nn.MSELoss()
for epoch in range(600):
# 更新一批数据
update_counter = update_data()
# 更新过数据后,学习N次
for i in range(200):
state, action, reward, next_state, done = get_sample()
# 计算value和target
value = get_value(state, action)
target = get_target(next_state, reward, done)
# 参数更新
loss = loss_fn(value, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
"""周期性更新目标网络"""
if (i + 1) % 10 == 0:
next_model.load_state_dict(model.state_dict())
if epoch % 50 == 0:
test_score = sum([test() for i in range(50)]) / 50
print(epoch, len(datas), update_counter, test_score)
三、 MultiStep-DQN
MultiStep 其实就是计算 Q 值的时候选择多个时间步。

四、 连续动作处理方法




