图像-跟踪算法

姓名:何康健 学号:21021210856 学院:电子工程学院

转载自:https://blog.csdn.net/tim514/article/details/121440319


1、什么是目标追踪?

目标跟踪是通过分析视频图片序列,对检测出的各个候选目标区域实施匹配,定位出这些目标在图像中的坐标位置,然后得到一系列相同目标的连续变化的过程。

白话: 从茫茫人海中,识别出你的脸

2、为什么需要目标追踪?

我的理解:

1. 我们可以排除其他背景信息对我们的干扰,只对关心的物体进行特定的标记,也就是对一个物体在空间中的位置进行连续的追踪标记。

2.跟踪算法比单帧检测算法更快,利用所有已知信息(速度 位置 外观特征)来追踪点,节省系统资源

例如: 人脸识别,我只需要人脸的信息。而且突然闯入镜头的人脸,我要对他进行特异性识别,不然他看隐私信息。

3、怎么做目标追踪?


1. 表观建模:通过目标的表观特征来建立相应的表观模型,将目标表观建模分为生成式跟踪和判别式跟踪。

生成式跟踪(模板匹配):如指纹识别,先采集指纹数据,然后使用指纹模型直接与目标类别进行匹配,以达到跟踪的目的。

a. 核跟踪算法:首先对目标进行表观建模,进而确定相似性度量策略以实现对目标的定位,均值漂移(Meanshift)算法,该算法本质上是基于梯度上升的局部寻优算法。

在目标跟踪时,Meanshift算法不能很好的解决目标被遮挡、背景杂乱、尺度变化等问题,分块Meanshift的跟踪算法优化了目标遮挡问题,通过不同分块对中心位置的加权投票,降低被遮挡的目标区域对跟踪结果的影响。

b.子空间算法: 基于子空间的算法将图像由高维数据压缩成低维特征空间,大大降低了目标跟踪算法计算所需的时间。主成分分析(PCA)、线性判别分析(LDA)、局部保持映射(LPP)等。缺点:通常子空间算法都会假设数据服从高斯分布或局部高斯分布,导致基于判决性子空间的跟踪算法往往结果不稳定。

c. 稀疏表示法:通常假设跟踪目标在一个由目标模板所构成的子空间内,其跟踪结果是通过寻求与模板重构误差最小的候选目标,Kanade-Lucas-Tomashi(KLT)特征追踪,追踪一张图片中几个特征点的位置。

2. 判别式跟踪:

a.基于Boosting和SVM的判别模型一直被广泛应用于目标检测和目标跟踪领域。提出了一种结合SVM和加权Meanshift的目标跟踪算法,使用颜色特征的SVM分类器对像素点进行分类,再结合对前景目标和背景特征赋予不同权值的Meanshift算法,突出前景特征,降低背景噪声对目标的干扰,实现了复杂场景下的目标跟踪。

b.基于随机学习的跟踪算法通过融合随机特征与输入建立目标的表观模型:典型的基于随机学习的跟踪算法有在线随机森林和朴素贝叶斯等。

c.深度学习:很多学者使用图像分类的大型数据集预训练模型,但是这种数据集与视频跟踪所需的实际数据往往存在较大的差异,导致跟踪误差较大。第二个难题是,随着深度学习网络层数的增加,算法的计算量增大,这会降低跟踪过程中的实时性。

3. 使用跟踪算法:

跟踪策略的目的是希望所建立的运动模型能够预估出下一帧图像中目标的可能状态,为目标的状态估计提供先验知识,用来在当前帧图像中寻找最优的目标位置。

常用的运动估计方法有:

卡尔曼滤波、粒子滤波(基于概率,贝叶斯):该类跟踪方法采用贝叶斯滤波理论估计目标的状态,即根据目标当前时刻的先验知识和状态方程,采用递推的方式对下一时刻的状态进行预测和修正,以实现对目标时变状态的估计。该方法通常采用位置、速度等作为目标位置信息的状态变量,状态变量通过状态方程的递推运算实现状态预测,之后把状态变量最新的观测值带入观测似然方程,并评价状态预测置信度,以修正状态变量的预测值。

隐马尔可夫模型和均值漂移: 均值漂移由目标检测算法获取目标的模板,然后将候选目标位置与目标模板相匹配以实现目标的跟踪。该类算法通常以代价函数作为目标模板与候选目标位置间的相似性度量,以最优化理论寻找代价函数的最大值,并选择代价函数取得最大值时候选目标的位置作为目标在当前图像序列中的估计位置。

总结:


OPENCV:

如果需要更高的准确率,并且可以容忍延迟的话,使用CSRT。

如果需要更快的FPS,并且可以容许稍低一点的准确率的话,使用KCF。

如果纯粹的需要速度的话,用MOSSE。

————————————————

版权声明:本文为CSDN博主「tim514」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容