Python中的进程、线程和协程

前言:

进程和线程
对操作系统来说,线程是最小的执行单元,进程是最小的资源管理单元。

协程(Coroutines)是一种比线程更加轻量级的存在。正如一个进程可以拥有多个线程一样,一个线程也可以拥有多个协程
协程不是被操作系统内核所管理,而完全是由程序所控制(也就是在用户态执行)。
这样带来的好处就是性能得到了很大的提升,不会像线程切换那样消耗资源。

一、概念

1、进程

进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。由于进程比较重量,占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。

2、线程

线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。

3、协程

协程是一种用户态的轻量级线程,协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。

二、区别:

1、进程多与线程比较

线程是指进程内的一个执行单元,也是进程内的可调度实体。线程与进程的区别:

  1. 地址空间:线程是进程内的一个执行单元,进程内至少有一个线程,它们共享进程的地址空间,而进程有自己独立的地址空间

  2. 资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进程的资源

  3. 线程是处理器调度的基本单位,但进程不是

  4. 二者均可并发执行

  5. 每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口,但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制

2、协程多与线程进行比较

  1. 一个线程可以多个协程,一个进程也可以单独拥有多个协程,这样python中则能使用多核CPU。

  2. 线程进程都是同步机制,而协程则是异步

  3. 协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态

三、进程和线程、协程在python中的使用

1、多进程一般使用multiprocessing库,来利用多核CPU,主要是用在CPU密集型的程序上,当然生产者消费者这种也可以使用。多进程的优势就是一个子进程崩溃并不会影响其他子进程和主进程的运行,但缺点就是不能一次性启动太多进程,会严重影响系统的资源调度,特别是CPU使用率和负载。

2、多线程一般是使用threading库,完成一些IO密集型并发操作。多线程的优势是切换快,资源消耗低,但一个线程挂掉则会影响到所有线程,所以不够稳定。现实中使用线程池的场景会比较多,具体可参考《python线程池实现》。

3、协程一般是使用gevent库,当然这个库用起来比较麻烦,所以使用的并不是很多。相反,协程在tornado的运用就多得多了,使用协程让tornado做到单线程异步,据说还能解决C10K的问题。所以协程使用的地方最多的是在web应用上。

总结一下就是IO密集型一般使用多线程或者多进程,CPU密集型一般使用多进程,强调非阻塞异步并发的一般都是使用协程,当然有时候也是需要多进程线程池结合的,或者是其他组合方式。

任务描述https://movie.douban.com/cinema/later/beijing/ 这个页面描述了北京最近上映的电影,你能否通过 Python 得到这些电影的名称、上映时间和海报呢?这个页面的海报是缩小版的,我希望你能从具体的电影描述页面中抓取到海报。


import requests
from bs4 import BeautifulSoup

def main():
    url = "https://movie.douban.com/cinema/later/beijing/"
    init_page = requests.get(url).content
    init_soup = BeautifulSoup(init_page, 'lxml')

    all_movies = init_soup.find('div', id="showing-soon")
    for each_movie in all_movies.find_all('div', class_="item"):
        all_a_tag = each_movie.find_all('a')
        all_li_tag = each_movie.find_all('li')

        movie_name = all_a_tag[1].text
        url_to_fetch = all_a_tag[1]['href']
        movie_date = all_li_tag[0].text

        response_item = requests.get(url_to_fetch).content
        soup_item = BeautifulSoup(response_item, 'lxml')
        img_tag = soup_item.find('img')

        print('{} {} {}'.format(movie_name, movie_date, img_tag['src']))

%time main()

########## 输出 ##########

阿拉丁 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2553992741.jpg
龙珠超:布罗利 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2557371503.jpg
五月天人生无限公司 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2554324453.jpg
... ...
直播攻略 06月04日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2555957974.jpg
Wall time: 56.6 s

import asyncio
import aiohttp

from bs4 import BeautifulSoup

async def fetch_content(url):
    async with aiohttp.ClientSession(
        headers=header, connector=aiohttp.TCPConnector(ssl=False)
    ) as session:
        async with session.get(url) as response:
            return await response.text()

async def main():
    url = "https://movie.douban.com/cinema/later/beijing/"
    init_page = await fetch_content(url)
    init_soup = BeautifulSoup(init_page, 'lxml')

    movie_names, urls_to_fetch, movie_dates = [], [], []

    all_movies = init_soup.find('div', id="showing-soon")
    for each_movie in all_movies.find_all('div', class_="item"):
        all_a_tag = each_movie.find_all('a')
        all_li_tag = each_movie.find_all('li')

        movie_names.append(all_a_tag[1].text)
        urls_to_fetch.append(all_a_tag[1]['href'])
        movie_dates.append(all_li_tag[0].text)

    tasks = [fetch_content(url) for url in urls_to_fetch]
    pages = await asyncio.gather(*tasks)

    for movie_name, movie_date, page in zip(movie_names, movie_dates, pages):
        soup_item = BeautifulSoup(page, 'lxml')
        img_tag = soup_item.find('img')

        print('{} {} {}'.format(movie_name, movie_date, img_tag['src']))

%time asyncio.run(main())

########## 输出 ##########

阿拉丁 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2553992741.jpg
龙珠超:布罗利 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2557371503.jpg
五月天人生无限公司 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2554324453.jpg
... ...
直播攻略 06月04日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2555957974.jpg
Wall time: 4.98 s
协程和多线程的区别,主要在于两点,一是协程为单线程;二是协程由用户决定,在哪些地方交出控制权,切换到下一个任务。
协程的写法更加简洁清晰,把 async / await 语法和 create_task 结合来用,对于中小级别的并发需求已经毫无压力。
写协程程序的时候,你的脑海中要有清晰的事件循环概念,知道程序在什么时候需要暂停、等待 I/O,什么时候需要一并执行到底。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容