python学习第四天

提取网页中数据

#爬虫
#大数据
#提取本地html文件
#使用xpath语法进行提取
#使用lxml中的xpath
#使用lxml提取h1中的内容
from lxml import html #若报错找不到指定的模块,就卸载掉然后再安装
#提取html文件
with open('./index.html','r',encoding='utf-8') as f:
    html_data=f.read()
    #print(html_data)
    #解析HTML文件,获取selector对象
    selector=html.fromstring(html_data)
    #selector中调用xpath方法
    #要获取标签中的内容,末尾要加text()
    h1=selector.xpath('/html/body/h1/text()')
    print(h1[0])

    #//可以代表任意位置出发
    #//标签1[@属性=属'性值]/标签2[@属性=属性值]container
    a=selector.xpath('//div[@class="container"]/a/text()')
    print(a[0])
    p=selector.xpath('//div[@class="container"]/p/text()')
    print(p[0])

    #获取属性值
    link=selector.xpath('//div[@id="container"]/a/@href')
    print(link[0])

获取响应

#导入
import requests
url='https://www.baidu.com'
response=requests.get(url)
print(response)
#获取str类型的响应
#response常用
print(response.text)
#获取bytes类型的响应,下载图片用到
print(response.content)
#获取响应头,
print(response.headers)
#获取状态码:200 404 500
print(response.status_code)
#获取编码
print(response.encoding)

当当网爬虫数据

import requests
from lxml import html
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def spider_dangdang(isbn):
    booklist=[]
    #目标站点地址
    url='http://search.dangdang.com/?key={}&act=input'.format(isbn)
    #print(url)
    #获取站点str类型的响应
    headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}

    resp=requests.get(url,headers=headers)
    html_data=resp.text
    #将html页面写入本地
    # with open('./dangdang.html','w',encoding='utf-8') as f:
    #     f.write(html_data)

    #提取目标站点的信息
    selector=html.fromstring(html_data)
    ul_list=selector.xpath('//div[@id="search_nature_rg"]/ul/li')
    print('您好,共有{}家店铺售卖此图书'.format(len(ul_list)))
    #遍历ul_list
    for li in ul_list:
        #图书名称
        title=li.xpath('./a/@title')[0].strip()
        print(title)
        # 图书购买链接
        link = li.xpath('a/@href')[0]
        print(link)
        #图书价格
        price=li.xpath('./p[@class="price"]/span[@class="search_now_price"]/text()')[0]
        price=float(price.replace('¥',''))
        print(price)

        #图书卖家名称
        store=li.xpath('./p[@class="search_shangjia"]/a/text()')
        if len(store)==0:
            store='当当自营'
        else:
            store=store[0]
        #store ='当当自营' if len(store)==0 else store[0]
        print(store)

        #添加每一个商家信息
        booklist.append({
            'title':title,
            'price':price,
            'link':link,
            'store':store
        })
        #按照价格进行排序
    booklist.sort(key=lambda x:x['price'],reverse=True)
        #遍历booklist
    for book in booklist:
        print(book)
        #展示价格最低的前10家  柱状图
        #店铺名称
    top10_store=[booklist[i] for i in range(10)]
        # x=[]
        # for store in top10_store:
        #     x.append(store['store'])
    x=[x['store'] for x in top10_store]
    print(x)
        #图书的价格
    y=[x['price'] for x in top10_store]
    print(y)
    plt.barh(x,y)
    plt.show()
        #存储为CSV文件
    df=pd.DataFrame(booklist)
    df.to_csv('dangdang.csv')
spider_dangdang('9787115428028')

豆瓣网爬虫

#练习:https://movie.douban.com/cinema/later/chongqing/
#电影名,上映日期,类型,上映国家,想看人数
#根据想看人数进行排序
#绘制即将上映电影国家的占比图
#绘制top5最想看的电影

#请求远程端站点
import requests
from lxml import  html
import pandas as pd
from matplotlib import pyplot as plt

plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

counts={}
# 目标站点地址
def spider_douban():
    movie_list=[]
    url = 'https://movie.douban.com/cinema/later/chongqing/'
    headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url, headers=headers)
    html_data = resp.text

#  将html页面写入本地
#     with open('dangdang.html', 'w', encoding='utf-8') as f:
#         f.write(html_data)
    #提取目标站信息
    selector = html.fromstring(html_data)
    ul_list = selector.xpath('//div[@id="showing-soon"]/div/div')
    print('您好,共有{}部电影即将在重庆上映'.format(len(ul_list)))

    # 遍历ul_list
    for li in ul_list:
        # 电影名称
        title = li.xpath('./h3/a/text()')[0].strip()
        print(title)
        # 上映日期
        date = li.xpath('./ul/li/text()')[0]
        print(date)
        # 类型
        type = li.xpath('./ul/li/text()')[1]
        print(type)

        # 上映国家
        country = li.xpath('./ul/li/text()')[2]
        print(country)
        # 想看人数
        num = li.xpath('./ul/li/span/text()')[0]
        print(num)
        num = int(num.replace('人想看', ''))

        #添加电影信息
        movie_list.append({
            'title':title,
            'date': date,
            'type':type,
            'country':country,
            'num':num
        })

    #按照人数进行排序
    movie_list.sort(key=lambda x:x['num'],reverse=True)

    #遍历booklist
    for movie in movie_list:
        print(movie)

    #画饼图,把国家提取出来
    city=[]
    # 提取国家信息
    for country in movie_list:
        city.append((country['country']))

    # 将国家信息汇总
    for country in city:
        if len(country) <= 1:
            continue
        else:
            counts[country] = counts.get(country, 0) + 1
    items = list(counts.items())
    print(items)

    movie_name=[]
    people=[]
    for i in range(4):
        role, count = items[i]
        print(role, count)
        movie_name.append(role)
        people.append(count)


     #绘制即将上映电影国家的占比图,饼图

    explode = [0.1, 0, 0, 0]
    plt.pie(people, explode=explode,labels=movie_name, shadow=True, autopct='%1.1f%%')
    plt.axis('equal')  # 保证饼状图是正圆,否则会有点扁
    plt.show()


    # 展示最想看的前5家,柱状图
    # 电影名称
    top5_movie = [movie_list[i] for i in range(5)]
    print(top5_movie)
    x = [x['title'] for x in top5_movie]
    print(x)
    # 想看人数
    y = [x['num'] for x in top5_movie]
    print(y)

    plt.bar(x,y)
    #plt.barh(x,y)
    plt.show()
    存储成csv文件
    df = pd.DataFrame(movie_list)
    df.to_csv('douban.csv')

spider_douban()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容