人工智能基本概念的思考——概率分布函数

一、概率论中概率分布函数的定义

1.随机试验

      (1)可以在相同的条件下重复地进行;

      (2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果

      (3)进行一次试验之前不能确定哪一个结果会出现.

2.样本空间

    对于随机试验,尽管在每次试验之前不能预知试验的结果,但试验的所有可能结果组成的集合是已知的.

  (1) 样本空间:随机试验 E 的所有可能结果组成的集合称为 E 的样本空间,记为 S.

    (3)样本点: 样本空间的元素.即E的每个结果,称为样本点.

3.随机事件

      在实际中,当进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.

      随机事件 : 我们称试验 E 的样本空间 S 的子集为 E 的随机事件,简称事件.

4.随机变量

5.分布函数

6.总结

我们对每一个 在相同条件下,会呈现不同结构的随机事件赋予一个数值。其后我们研究这个数值的性质。我们将这些性质扩充为一门学科——概率论。


现在我们思考一个简单的分类任务。我们看看在这个任务中,什么是随机变量,如何量化随机变量。


二、图像识别——熊猫和狗

1.图像采集之随机变量

场景一:一只小熊猫在树上玩耍。

图一:熊猫

我们要采集熊猫的图片,训练出可识别熊猫的模型。在环境不变的情况下,即小熊猫玩耍的场景不变,拍摄的人不变,相机不变等等。我们拍摄出来的图片可能不一样。根据概率论的定义,拍摄熊猫图片为一随机事件。设图一为随机事件A。

现在我们要定义一个实值函数f(A),将随机事件A变成数字。图一是一个分辨率为920X517的图片。定义一个920X517的X矩阵和A对应,即

这里我们建立了一个随机事件A(熊猫图像)到矩阵X的映射。随机事件A对应920X517个随机变量,即

不能插入公式,我也很头疼

 是一个随机变量。

2.计算概率

随机事件A发生的概率如何计算?根据大数定律我们知道,当实验次数足够多时,随机事件A发生的概率近似等于频率。所以我们在相同的情况下,拍摄足够多的图像,统计图一出现的频率,即可得到图一的概率。即,P(图一) = 图一出现的频率。

3.概率分布函数

根据上面分布函数的定义,我们知道:

公式一

这个分布函数的意义:给出随机变量a小于x的概率。它衡量的是一系列图像出现的概率。

4.边缘分布

    我们给定的应用背景是识别熊猫和狗。所以当我们拍摄一张熊猫的图片时,会给定该图片熊猫的标签。所以我们在定义随机变量

的时候,应该再加一维,把标注信息y加上,即随机变量为 

此时,概率分布函数为

对应 第三节定义的概率分布函数(公式一)

则边缘分布函数为

边缘分布函数

边缘分布函数的意义就是第三节公式一的含义。

5.条件分布

我们训练一个模型最终的意义是识别熊猫和狗。图片为熊猫时,令y=0。图片为狗时,令y=1.

图二 :狗( y=1 )

给定一张图片B,如上图所示,我们要求出该图片属于狗的概率是多少。即,P(y|B)=?

这里图片B是已知的,标签y是未知的。我们要在B已知的情况下,计算y的概率,称为条件分布。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容