计算机网络 - TCP协议/UDP协议(三次握手/四次挥手)

内容来源 B站 一条视频讲清楚TCP协议与UDP协议-什么是三次握手与四次挥手
仅供个人学习参考,面试宝典

应用层 - 传输层 - 网络层 - 数据链路层 - 物理层

tcp和udp都工作在传输层,他们的目标都在程序之间传输数据。数据可以是文本文件,可以是视频,也可以是图片。对于tcp协议和upd 协议来说,都是一堆二进制数,并没有多大区别。

两个协议最大的区别一个基于连接,一个基于非连接。

如果把人与人之间的通信比喻为进程与进程的通信。基本有两种方式,第一种是写信,第二种方式是打电话。

如果不考虑速度因素,这两者之间最大的区别就是信寄出去对方是否能收到,以及收到的信的内容是否完整,先后寄两封信过去是否按照顺序接收都变成了未知数,甚至填写的收信地址和收信人是否存在,都无法确认;而打电话则不同,从拨打电话到对方接通,互相通话,再到结束通话后挂断。这一系列的流程都能得到及时的反馈,并且能确认对方准确的接收到。

打电话也是基于链接的也就是TCP,而写信就是基于非连接的就是UDP。

TCP协议

保证传输过程的三个关键的步骤,分别为三次握手、传输确认、四次挥手。

三次握手
三次握手

三次握手是建立连接的过程,当客户端向服务端发起连接时,会先发一包连接请求数据,过去询问一下,能否与你建立连接,这包数据我们称之为SYN包。如果对端同意连接,则回复一包SYN+ACK包,客户端收到之后回复一包ACK包连接建立。

因为这个过程中互相发送了三包数据,所以称之为三次握手。

Q:为什么要三次握手,而不是两次握手,服务端回复完SYN+ACK包之后就建立连接

A:这是为了防止因为已失效的请求报文突然又传到服务器引起错误。解决网络信道不可靠的问题

Q:为什么不是四次握手?

A:因为通信不可能100%可靠,而上面的三次握手已经做好了通信的准备工作,再四次握手,并不能显著提高可靠性,而且也没有必要。

两次握手建立连接

假设采用两次握手建立连接,客户端向服务端发送了一个SYN包,因为某些未知的原因,并没有到达服务器。在中间某个网络节点产生了滞留。为了建立连接,客户端会重发SYN包,这次的数据包正常送达,服务端回复SYN+ACK包之后建立了连接。但是第一包数据阻塞的网络节点突然恢复,第一包SYN包又送达到服务器,这时服务端会误认为是客户端又发起了一个新的连接,从而在两次握手之后,进入等到数据状态。服务端认为是两个连接,而客户端认为是一个连接,造成了状态不一致。

如果在三次握手的情况下,服务端收不到最后的ACK包,自然不会认为连接建立成功,所以三次握手本质上来说就是为了解决网络信道不可靠的问题。为了能在不可靠的信道上,建立可靠的连接。

数据传输
数据传输

经过三次握手之后,客户端和服务端都进入了数据传输状态。tcp协议需要在不可靠的信道上保证可靠的连接。现在就有几个问题需要面对:1. 一包数据有可能被拆成多包发送,如何处理丢包问题 ;2. 这些数据包到达的先后顺序不同,如何处理乱乱序问题。

针对以上的要求,TCP协议为每一个连接建立了一个发送缓冲区,从建立链接后的第一个字节的序列号为0,后面每个字节的序列号就会增加1。发送数据时,从发送缓冲区,取一部分数据组成发送报文,在其tcp协议头中会附带序列号和长度,接受端在收到数据后,需要回复确认报文。确认报文中的ACK,等于接收序列号加长度,也就是下一包数据需要发送的起始序列号。

这样一问一答的发送方式,能够使发送端确认发送的数据已经被对方收到,发送端也可以一次发送连续多包数据,接收端只需要回复一次ACK就可以了,这样发送端可以把待发送的数据分割成一系列的碎片,发送到对端。对端根据序列号和长度,在接受后重构出来完整的数据,假设其中丢失了某些数据包,在接收端可以要求发送端重传。比如丢失了100-199,这100个字节,接收端向发送端发送ACK = 100 报文,发送端收到后重传这一包数据,接受端进行补齐。

以上过程不区分客户端和服务端,TCP连接是全双工的,对于两端来说均采用上述机制。

四次挥手

处于连接状态的客户端和服务端都可以发起关闭连接请求,此时需要四次挥手来进行连接关闭。

假设客户端主动发起连接关闭请求,他需要将服务端发起一包FIN包,表示要关闭连接,自己进入终止等待1状态,这是第一次挥手。

服务端收到FIN包,发送一包ACK包,表示自己进入了关闭等待状态,客户端进入终止等待2状态,这是第二次挥手。

服务端此时还可以发送未发送的数据,而客户端还可以接收数据,待服务端发送完数据之后,发送一包FIN包,进入最后确认状态,这是第三次挥手。

客户端收到之后回复ACK包,进入超时等待状态,经过超时时间后关闭连接,而服务端收到ACK包后,立即关闭连接,这是第四次挥手。

Q:为什么客户端需要等待超时时间?

A:为了保证对方已收到ACK包,因为假设客户端发送完最后一包ACK包后就释放了连接,一旦ACK包在网络中丢失,服务端将一直停留在最后确认状态;如果客户端发送最后一包ACK包后,等待一段时间,这是服务端会因为没有收到ACK包会重发FIN包,客户端会响应这个FIN包重发ACK包并刷新超时时间。这个机制跟三次握手一样,也是为了保证在不可靠的网络链路中进行可靠的连接断开确认。

UDP协议
UDP协议以及与TCP协议的区别

基于非连接的。发送数据就是简单的把数据包封装一下,然后从网卡发出去就可以了,数据包之间并没有状态上的联系。

UDP这种简单的处理方式,导致他的性能损耗非常少。对于CPU、内存资源的占用也远小于TCP,但是对于网络传输过程中产生的丢包,UDP协议并不能保证。所以UDP在传输稳定性上要弱于TCP。

可以总结出来TCP和UDP的主要区别:

TCP 传输数据稳定可靠,适用于对网络通讯质量要求较高的场景,需要准确无误的传输给对方。比如传输文件、发送邮件、浏览网页等

UDP 的优点是速度快,但是可能产生丢包,所以适用于对实时性要求较高,但是对少量丢包并没有太大要求的场景,比如域名查询、语音通话、视频直播等

UDP还有一个非常重要的应用场景,就是隧道网络。比如常用的VPN,以及在SDN中用到的VXLAN也是一种隧道网络。

关于三次握手四次挥手更详细的内容
三次握手
image.png
  • 第一次握手:

客户端发送syn包(Seq=x)到服务器,并进入SYN_SEND状态,等待服务器确认;

  • 第二次握手:

服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(Seq=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

  • 第三次握手:

客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。

握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。

四次挥手

数据传输完毕后,双方都可释放连接。最开始的时候,客户端和服务器都是处于ESTABLISHED状态,假设客户端主动关闭,服务器被动关闭。

image.png

预览

  • 第一次挥手:

客户端发送一个FIN,用来关闭客户端到服务器的数据传送,也就是客户端告诉服务器:我已经不 会再给你发数据了(当然,在fin包之前发送出去的数据,如果没有收到对应的ack确认报文,客户端依然会重发这些数据),但是,此时客户端还可以接受数据。

FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

  • 第二次挥手:

服务器收到FIN包后,发送一个ACK给对方并且带上自己的序列号seq,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号)。此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

  • 第三次挥手:

服务器发送一个FIN,用来关闭服务器到客户端的数据传送,也就是告诉客户端,我的数据也发送完了,不会再给你发数据了。由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

  • 第四次挥手:

主动关闭方收到FIN后,发送一个ACK给被动关闭方,确认序号为收到序号+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

至此,完成四次挥手。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容