TensorFlow卷积函数tf.nn.conv2d

tf.nn.conv2d

在TensorFlow中使用tf.nn.conv2d实现卷积操作,其格式如下:

tf.nn.conv2d(
    input,
    filter,
    strides,
    padding,
    use_cudnn_on_gpu=True,
    data_format='NHWC',
    dilations=[1, 1, 1, 1],
    name=None
)

Returns:
A Tensor. 
input:

指需要做卷积的输入图像(tensor),具有[batch,in_height,in_width,in_channels]这样的4维shape,分别是图片数量、图片高度、图片宽度、图片通道数,数据类型为float32或float64。

filter:

相当于CNN中的卷积核,它是一个tensor,shape是[filter_height,filter_width,in_channels,out_channels]:滤波器高度、宽度、图像通道数、滤波器个数,数据类型和input相同。

strides:

卷积在每一维的步长,一般为一个一维向量,长度为4,一般为[1,stride,stride,1]。

padding:

定义元素边框和元素内容之间的空间,只能是‘SAME’(边缘填充)或者‘VALID’(边缘不填充)。

return:

返回值是Tensor

例子

例1(1个通道1个输出)

假设我们用一个5*5的矩阵来模拟图片,定义一个2*2点的卷积核

例1
import tensorflow as tf
input = tf.Variable(tf.constant(1.0, shape=[1, 5, 5, 1]))
filter = tf.Variable(tf.constant([-1.0, 0, 0, -1], shape=[2, 2, 1, 1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')

init = tf.global_variables_initializer()
with tf.Session() as sess:
  sess.run(init)
  print("op:\n",sess.run(op))

输出如下:

op:
[[[[-2.]
[-2.]
[-1.]]

[[-2.]
[-2.]
[-1.]]

[[-1.]
[-1.]
[-1.]]]]

实际过程就是:



padding='SAME',这种情况tensorflow会先在边侧补0(优先右侧和下方),然后经过卷积操作得到结果。

例2(1个通道3个输出)

我们用三个filter来创造三个输出:


多通道
import tensorflow as tf
input = tf.Variable(tf.constant(1.0, shape=[1, 5, 5, 1]))

raw = tf.Variable(tf.constant([-1.0, 0, 0, -1], shape=[2, 2, 1, 1]))
filter=tf.tile(raw,[1,1,1,3])

op=tf.nn.conv2d(input,filter, strides=[1, 2, 2, 1], padding='SAME')

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print("op:\n",sess.run(op))

输出结果:

output

三个filter相同,输出了三个相同的结果(按列看)

例3(2个通道2个输出)

例3.png

代码:

import tensorflow as tf
input = tf.Variable(tf.constant(1.0, shape=[1, 3, 3, 2]))

raw = tf.Variable(tf.constant([-1, 9.0, 0, 0,0,0,1,0], shape=[2, 2, 2, 1]))
filter=tf.tile(raw,[1,1,1,2])

op=tf.nn.conv2d(input,filter, strides=[1, 2, 2, 1], padding='SAME')

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(filter))
    print("\nop:\n",sess.run(op))

输出结果:

filter:

filter.png

这是两个filter,红框就是一个卷积核,绿框黄框分别对应着两个通道。

卷积结果:


output.png

输出就是两个2x2的矩阵。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容