在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度,这是算法的时间复杂度的表示。
O后面的括号中有一个函数,指明某个算法的耗时与数据增长量之间的关系。其中的n代表输入数据的量。
O(n):代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
O(logn):当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn):n乘以logn,当数据增大256倍时,耗时增256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
O(1):最低的时空复杂度,也就是耗时与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
链接
o(1), o(n), o(logn), o(nlogn)的理解(转)
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 由于平时接触算法比较少,今天看资料看到了o(1),都不知道是什么意思,查资料之后才理解。 描述算法复杂度时,常用...
- 一.你认为电商运营的成本包括哪些?在电子商务实际运营中发现有哪些利用价格去吸引消费者的方法? 电商运营的成本包括:...