tensorflow RNN

github链接

和其他代码比起来,这个代码的结构很不科学,只有一个主文件,model和train没有分开……

参考链接:
tensorflow笔记:多层LSTM代码分析

代码分析:

  1. num_steps是什么?
    下图左边是rolled版本,这种结构的反向传播计算很困难。因此采用右边这种结构,有num_step个x输入。每次训练数据输入格式为[batch_size, num_steps](类比seq2seq中的encoder_input的shape [batch_size, encoder_size])。如下图:
  2. 和seq2seq的区别?
    seq2seq是分为了两个部分,encoder和decoder部分。在RNN中,只有encode,即输入x,输出o,不需要decoder_input部分。在本例中,输入是[batch_size, num_steps]个的单词预测概率(one-hot形式)。和[batch_size, num_steps]个target(数字形式)作比较。计算loss的函数是tf.contrib.seq2seq.sequence_loss
  3. graph是怎么run起来的?
    定义了模型之后,第二个graph负责给model feed并统计结果。
    要fetch的内容有:model.cost,model.final_state, model.eval_op(train_op)
    vals = session.run(fetches, feed_dict)

代码结构:

reader.py中的两个主要函数:
  • ptb_raw_data把三个txt中的单词都转化成唯一的id,只保留最常见的10000个单词。
  • ptb_producer定义了input和target。格式为:batch_size*num_steps的二维矩阵。target是input右移1位后的结果。即通过前一个单词预测后一个单词。
ptb_word_lm.py中

首先定义了PTBModel结构,__init__函数定义了self.config, inputs, output, state, self.logits, self.cost, self.final_state, (self.learning_rate, self._train_op, self._new_lr, self._lr_update)这些是train才有的。

最后在main函数里
  • 第一个graph里,分别构建learn\valid\test PTBmodel,保存在metagraph中。
  • 第二个graph里,导入metagraph,对于三个模型分别run_epoch。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 近日,谷歌官方在 Github开放了一份神经机器翻译教程,该教程从基本概念实现开始,首先搭建了一个简单的NMT模型...
    MiracleJQ阅读 11,562评论 1 11
  • github链接 注:1.2最新版本不兼容,用命令pip3 install tensorflow==1.0.0 在...
    yingtaomj阅读 5,826评论 0 1
  • 在罗胖的演讲中有几处让我为之震撼。 时间的概念在商业 在过去的商业世界里,各种企业用生产的物品占据我们的空间,我们...
    我才是小柳子阅读 897评论 0 0
  • 这世界上 最高的欣赏就是同在 我与鲜花同在 在夏叶和冬枝里我寻找她跳跃的步子 我与火同在 钻开木头敲击石头切开血管...
    驶向拜占庭阅读 1,267评论 0 1
  • 再难过也得过啊 连续三天失眠了,很强烈,是那种熟悉的感觉,睡着了都没感觉,睡一会就醒了,夜里睡不着,白天也不想睡,...
    桃桃茂阅读 897评论 0 1