OpenVINO加速YOLOv8分类模型(含完整源代码)

本文简介

  本系列文章将在AI爱克斯开发板上使用OpenVINO™ 开发套件依次部署并测评YOLOv8的分类模型、目标检测模型、实例分割模型和人体姿态估计模型。

AI爱克斯开发板

请先克隆本文的代码仓:git clone https://gitee.com/ppov-nuc/yolov8_openvino.git

YOLOv8简介

  YOLOv8是Ultralytics公司基于YOLO框架,发布的一款面向物体检测与跟踪、实例分割、图像分类和姿态估计任务的SOTA模型工具套件。

  只需要几行Python代码,或者一行命令,即可完成在自己的数据集上从头训练(Training a model from scratch)或者微调(Fine-tune)YOLOv8模型。
用Python代码训练YOLOv8模型
用命令行训练YOLOv8模型

导出训练好的YOLOv8模型,并用OpenVINO部署在英特尔硬件平台上,也非常方便,下面依次介绍:

第一步:准备YOLOv8的OpenVINO推理程序开发环境。请基于本文范例代码仓提供的requirements.txt文件,通过一行命令完成开发环境安装。

pip install -r requirements.txt

第二步:导出YOLOv8 OpenVINO IR模型。首先使用命令:yolo classify export model=yolov8n-cls.pt format=onnx imgsz=224,完成yolov8n-cls.onnx模型导出。

导出yolov8n-cls.onnx

然后使用命令:mo -m yolov8n-cls.onnx --compress_to_fp16,优化并导出FP16精度的OpenVINO IR格式模型。
导出yolov8n-cls IR模型

第三步:用benchmark_app测试yolov8分类模型的推理计算性能。 benchmark_app是OpenVINOTM工具套件自带的AI模型推理计算性能测试工具,可以指定在不同的计算设备上,在同步或异步模式下,测试出不带前后处理的纯AI模型推理计算性能。
使用命令:benchmark_app -m yolov8n-cls.xml -d GPU,获得yolov8n-cls.xml模型在AI爱克斯开发板的集成显卡上的异步推理计算性能,如下图所示。

benchmark

第四步:使用OpenVINO Python API编写YOLOv8分类模型推理程序。基于OpenVINO Python API的YOLOv8分类模型范例程序yolov8_cls_ov_sync_infer.py(请克隆本文代码仓)的核心源代码,如下所示:

# 实例化Core对象
core = Core() 
# 载入并编译模型
net = core.compile_model(f'{MODEL_NAME}-cls.xml', device_name="GPU")
# 获得模型输入输出节点
input_node = net.inputs[0]    # yolov8n-cls只有一个输入节点
N, C, H, W = input_node.shape # 获得输入张量的形状
output_node = net.outputs[0]  # yolov8n-cls只有一个输出节点
ir = net.create_infer_request()
##########################################
#   ---根据模型定义预处理和后处理函数-------
##########################################

# 定义预处理函数
def preprocess(image, new_shape=(W,H)):
    # Preprocess image data from OpenCV
    [height, width, _] = image.shape
    length = max((height, width))
    letter_box = np.zeros((length, length, 3), np.uint8)
    letter_box[0:height, 0:width] = image
    blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=new_shape, swapRB=True)
    return blob
# 定义后处理函数
def postprocess(outs):
    score = np.max(outs)
    id = np.argmax(outs)
    return score, id, imagenet_labels[id]

##########################################
#   ----- AI同步推理计算 ------------
##########################################
# 采集图像
image = cv2.imread("bus.jpg")
# 数据预处理
blob = preprocess(image)
# 执行推理计算并获得结果
outs = ir.infer(blob)[output_node]
# 对推理结果进行后处理
score, id, label = postprocess(outs)

运行结果,如下所示:
YOLOv8+OpenVINO
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容