Pandas之对 Pandas Series 执行算术运算

和 NumPy ndarray 一样,我们可以对 Pandas Series 执行元素级算术运算。

# We create a Pandas Series that stores a grocery list of just fruits
fruits= pd.Series(data = [10, 6, 3,], index = ['apples', 'oranges', 'bananas'])

# We display the fruits Pandas Series
fruits

apples 10
oranges 6
bananas 3
dtype: int64

我们现在可以通过执行基本的算术运算,修改 fruits 中的数据。我们来看一些示例:

# We print fruits for reference
print('Original grocery list of fruits:\n ', fruits)

# We perform basic element-wise operations using arithmetic symbols
print()
print('fruits + 2:\n', fruits + 2) # We add 2 to each item in fruits
print()
print('fruits - 2:\n', fruits - 2) # We subtract 2 to each item in fruits
print()
print('fruits * 2:\n', fruits * 2) # We multiply each item in fruits by 2 
print()
print('fruits / 2:\n', fruits / 2) # We divide each item in fruits by 2
print()

Original grocery list of fruits:
apples 10
oranges 6
bananas 3
dtype: int64

fruits + 2:
apples 12
oranges 8
bananas 5
dtype: int64

fruits - 2:
apples 8
oranges 4
bananas 1
dtype: int64

fruits * 2:
apples 20
oranges 12
bananas 6
dtype: int64

fruits / 2:
apples 5.0
oranges 3.0
bananas 1.5
dtype: float64

我们还可以对 Pandas Series 中的所有元素应用 NumPy 中的数学函数,例如 sqrt(x)

# We import NumPy as np to be able to use the mathematical functions
import numpy as np

# We print fruits for reference
print('Original grocery list of fruits:\n', fruits)

# We apply different mathematical functions to all elements of fruits
print()
print('EXP(X) = \n', np.exp(fruits))
print() 
print('SQRT(X) =\n', np.sqrt(fruits))
print()
print('POW(X,2) =\n',np.power(fruits,2)) # We raise all elements of fruits to the power of 2

Original grocery list of fruits:
apples 10
oranges 6
bananas 3
dtype: int64

EXP(X) =
apples 22026.465795
oranges 403.428793
bananas 20.085537
dtype: float64

SQRT(X) =
apples 3.162278
oranges 2.449490
bananas 1.732051
dtype: float64

POW(X,2) =
apples 100
oranges 36
bananas 9
dtype: int64

Pandas 还允许我们仅对 fruits 购物清单中的部分条目应用算术运算。我们来看一些示例:

# We print fruits for reference
print('Original grocery list of fruits:\n ', fruits)
print()

# We add 2 only to the bananas
print('Amount of bananas + 2 = ', fruits['bananas'] + 2)
print()

# We subtract 2 from apples
print('Amount of apples - 2 = ', fruits.iloc[0] - 2)
print()

# We multiply apples and oranges by 2
print('We double the amount of apples and oranges:\n', fruits[['apples', 'oranges']] * 2)
print()

# We divide apples and oranges by 2
print('We half the amount of apples and oranges:\n', fruits.loc[['apples', 'oranges']] / 2)

Original grocery list of fruits:
apples 10
oranges 6
bananas 3
dtype: int64

Amount of bananas + 2 = 5

Amount of apples - 2 = 8

We double the amount of apples and oranges:
apples 20
oranges 12
dtype: int64

We half the amount of apples and oranges:
apples 5.0
oranges 3.0
dtype: float64

你还可以对具有混合数据类型的 Pandas Series 应用算术运算,前提是该算术运算适合 Series 中的所有数据类型,否则会出错。我们来看看将购物清单乘以 2 会发生什么

# We multiply our grocery list by 2
groceries * 2

eggs 60
apples 12
milk YesYes
bread NoNo
dtype: object

可以看出,在上述示例中,我们乘以了 2,Pandas 使每个条目的数据翻倍,包括字符串。Pandas 能够这么操作是因为,乘法运算 * 对数字和字符串来说都可行。如果你要应用对数字有效但是对字符串无效的运算,例如 /,则会出错。如果 Pandas Series 中有混合类型的数据,确保对于所有的元素数据类型,这些算术运算都有效。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容