姓名:程祖晗
学号:19021210938
【嵌牛导读】随着优化算法的不断研究,神经网络已经深入到许多领域,解决了许多实际问题,并引发了人类不断地思考。本篇讨论了小波神经网络的相关知识。
【嵌牛鼻子】BP神经网络 小波变换 小波神经网络
【嵌牛正文】
一、BP神经网络
BP 网络的实现过程主要分成两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层到达输出层,第二阶段是误差的反向传播,从输出层经过隐含层到达输入层。误差传递完后,依次调节输入层和隐含层之间的权值和偏置,以及隐含层和输出层之间的权值和偏置。如图1所示:
BP神经网络的神经元如图2所示:
其中,激活函数为Sigmoid函数,表达式为:
二、小波神经网络
2.1小波变换
小波变换是以 Fourier 分析为基础的一种新的数学变换手段,它克服了 Fourier变换的局限性以及加窗 Fourier 变换的窗口不变的缺点。小波变换主要通过伸缩和平移实现多尺度细化,突出所要处理的问题细节,有效提取局部信息。
2.2小波神经网络
小波神经网络是改进的BP网络,将原先的隐含层的Sigmiod激活函数替换为小波函数——Morlet小波,其表达式为
本篇设计的4层小波神经网络的模型图如图3所示:
2.3模型的建立
a.初始化各项参数
在图3的网络设计中,为输入样本,为输出样本,分别为输入层、隐含层、输出层节点,为各节点的连接权值。
b.前向计算
隐含层1的输入为所有输入的加权和:,隐含层1的输出为。其余隐含层的输入输出及输出层与1类似,在此不再赘述。
c.误差反向传播
误差反向传播采用梯度下降算法调整各层间的权值,即权值修正过程。权值修正方式有两种,一是按输入样本逐次修正,二是全部样本输入后再修正。本篇采用第一种方法。
根据误差函数修正权值和小波因子,为了避免算法陷入局部最小值,加快其收敛速度,引入了动量因子,学习率为,公式分别如下表示:
总结:小波神经网络拥有小波变换的优点,避免了 BP 网络设计结构上的盲目性,但是隐含层的节点数以及各层之间的权值、尺度因子的初始化参数难以确定,会影响网络的收敛速度。在后续的学习中,可以尝试其他小波函数的神经网络,通过比较其最优结果构造小波神经网络。