小波神经网络

姓名:程祖晗

学号:19021210938

【嵌牛导读】随着优化算法的不断研究,神经网络已经深入到许多领域,解决了许多实际问题,并引发了人类不断地思考。本篇讨论了小波神经网络的相关知识。

【嵌牛鼻子】BP神经网络  小波变换   小波神经网络

【嵌牛正文】

一、BP神经网络

BP 网络的实现过程主要分成两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层到达输出层,第二阶段是误差的反向传播,从输出层经过隐含层到达输入层。误差传递完后,依次调节输入层和隐含层之间的权值和偏置,以及隐含层和输出层之间的权值和偏置。如图1所示:


BP神经网络的神经元如图2所示:

其中,激活函数为Sigmoid函数,表达式为:f(x)=\frac{1}{1+e^{-x}}

二、小波神经网络

2.1小波变换

小波变换是以 Fourier 分析为基础的一种新的数学变换手段,它克服了 Fourier变换的局限性以及加窗 Fourier 变换的窗口不变的缺点。小波变换主要通过伸缩和平移实现多尺度细化,突出所要处理的问题细节,有效提取局部信息。

2.2小波神经网络

小波神经网络是改进的BP网络,将原先的隐含层的Sigmiod激活函数替换为小波函数——Morlet小波,其表达式为

\psi (x)=\cos(1.75x)e^{-\frac{x^2}{2}}

本篇设计的4层小波神经网络的模型图如图3所示:

2.3模型的建立

a.初始化各项参数

在图3的网络设计中,X=[x_{1},x_{2} ,……,x_{m}]^T为输入样本,Y=[y_{1},y_{2} ,……,y_{n}]^T为输出样本,m,s_{i},n 分别为输入层、隐含层、输出层节点,W为各节点的连接权值。

b.前向计算

隐含层1的输入为所有输入的加权和:x_{j1}=\sum_{i=1}^mW_{ij}x_{i}    ,隐含层1的输出为h_{j1}=h(\frac{x_{j1} -b_{j1} }{a_{j1}} ) 。其余隐含层的输入输出及输出层与1类似,在此不再赘述。

c.误差反向传播

误差反向传播采用梯度下降算法调整各层间的权值,即权值修正过程。权值修正方式有两种,一是按输入样本逐次修正,二是全部样本输入后再修正。本篇采用第一种方法。


根据误差函数E修正权值和小波因子,为了避免算法陷入局部最小值,加快其收敛速度,引入了动量因子\alpha ,学习率为\eta _{1} ,\eta _{2},公式分别如下表示:

总结:小波神经网络拥有小波变换的优点,避免了 BP 网络设计结构上的盲目性,但是隐含层的节点数以及各层之间的权值、尺度因子的初始化参数难以确定,会影响网络的收敛速度。在后续的学习中,可以尝试其他小波函数的神经网络,通过比较其最优结果构造小波神经网络。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351