2018年,火爆的科技层出不穷,大数据、云计算、人工智能、区块链等等都被侃侃而谈。尤其是大数据工程师更是深受程序员的青睐,如此火爆的职业,吸引了大批有志青年的加入。但在加入之前,你仍需要一份详细的就业前景分析报告。
作为中国官方重点扶持的战略性新兴产业,大数据产业已逐步从概念走向落地“大数据”和“虚拟化”两大热门领域得到了广泛关注和重视,90%企业都在使用大数据。
财政大数据包括:公安大数据、质检大数据、食品安全大数据、卫生大数据、共商大数据、民政大数据;
企业大数据包括:企业大数据、财务大数据、中小企业大数据;
垂直行业大数据包括:大数据电视、大数据平台、金融大数据、税务大数据。
在中国,大数据也正迅速成为行业和市场的热点。专注于亚太及中国市场的市场调查机构泛亚咨询发布的调研数据显示,目前出现在各类招聘平台上与数据分析相关的招聘需求比去年同期相比,增长率高达67%;大数据相关高级职位的薪酬与其他同类技术职位相比平均高出43%以上。无论是世界范围内还是在中国,大数据浪潮正在深刻改变着各行各业,而各行各业对大数据人才的需求,以及技术从业者希望跻身大数据高级人才的需求也变得越来越强烈。
随着互联网技术的发展,大数据行业前景非常被看好,有很多朋友对大数据行业心向往之,却苦于不知道该如何下手,或者说学习大数据不知道应该看些什么书。作为一个零基础大数据入门学习者该看哪些书?
1、《数据挖掘》
这是一本关于数据挖掘领域的综合概述,本书前版曾被KDnuggets的读者评选为最受欢迎的数据挖掘专著,是一本可读性极佳的教材。它从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和最新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。
2、《Big Data》
这是一本在大数据的背景下,描述关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题的书。这本书提供了令人耳目一新的全面解决方案。但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。本书将教你充分利用集群硬件优势的Lambda架构,以及专门用来捕获和分析网络规模数据的新工具,来创建这些系统。
3、《Mining of Massive Datasets》
这是一本书是关于数据挖掘的。但是本书主要关注极大规模数据的挖掘,也就是说这些数据大到无法在内存中存放。由于重点强调数据的规模,所以本书的例子大都来自Web本身或者Web上导出的数据。另外,本书从算法的角度来看待数据挖掘,即数据挖掘是将算法应用于数据,而不是使用数据来“训练”某种类型的机器学习引擎。
对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解
想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家
并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系 。