04 聚类算法 - 代码案例一 - K-means聚类

03 聚类算法 - K-means聚类

本案例数据来源:基于scikit包中的创建模拟数据的API创建聚类数据。

100个样本,2个特征,3个聚簇中心点,标准差=1.0,样本取值范围(-10,10)

使用K-means算法对数据进行分类操作,并获得聚类中心点以及总的样本簇中心点距离和值。
引入包:from sklearn.cluster import KMeans
相关API:https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

用KMeans进行聚类分析

常规操作:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import sklearn.datasets as ds
import matplotlib.colors
from sklearn.cluster import KMeans#引入kmeans

## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
一、产生模拟数据:

我们用make_blobs方法生成了2组数据:(data,y) 和 (data2,y2)

N = 1500 # 1500个样本
centers = 4 # 4个聚簇中心点
data,y = ds.make_blobs(N, n_features=2, centers=centers, random_state=28)
data2,y2 = ds.make_blobs(N, n_features=2, centers=centers,  random_state=28)

data3 = np.vstack((data[y == 0][:200], data[y == 1][:100],
     data[y == 2][:10], data[y == 3][:50]))
y3 = np.array([0] * 200 + [1] * 100 + [2] * 10 + [3] * 50)
二、数据前期处理跟前面模型是一样

这里由于数据是自己生成的,所以不做数据预处理了

三、模型的构建

n_clusters就是K值,也是聚类值,本例中定义了centers = 4;
init初始化方法,可以是kmeans++,随机,或者自定义的ndarray

km = KMeans(n_clusters=centers, init='random',random_state=28)
km.fit(data, y)
y_hat = km.predict(data)
print ("所有样本距离聚簇中心点的总距离和:", km.inertia_)
print ("距离聚簇中心点的平均距离:", (km.inertia_ / N))
cluster_centers = km.cluster_centers_
print ("聚簇中心点:", cluster_centers)
y_hat2 = km.fit_predict(data2)
y_hat3 = km.fit_predict(data3)
四、画图
def expandBorder(a, b):
    d = (b - a) * 0.1
    return a-d, b+d
cm = mpl.colors.ListedColormap(list('rgbmyc'))
plt.figure(figsize=(15, 9), facecolor='w')
1、原始数据
plt.subplot(241)
plt.scatter(data[:, 0], data[:, 1], c=y, s=30, cmap=cm, edgecolors='none')

x1_min, x2_min = np.min(data, axis=0)
x1_max, x2_max = np.max(data, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'原始数据')
plt.grid(True)
2、K-Means算法聚类结果
plt.subplot(242)
plt.scatter(data[:, 0], data[:, 1], c=y_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'K-Means算法聚类结果')
plt.grid(True)

m = np.array(((1, 1), (0.5, 5)))
data_r = data.dot(m)
y_r_hat = km.fit_predict(data_r)
3、数据旋转后原始数据图
plt.subplot(243)
plt.scatter(data_r[:, 0], data_r[:, 1], c=y, s=30, cmap=cm, edgecolors='none')

x1_min, x2_min = np.min(data_r, axis=0)
x1_max, x2_max = np.max(data_r, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)

plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'数据旋转后原始数据图')
plt.grid(True)
4、数据旋转后预测图
plt.subplot(244)
plt.scatter(data_r[:, 0], data_r[:, 1], c=y_r_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'数据旋转后预测图')
plt.grid(True)
5、不同方差的原始数据
plt.subplot(245)
plt.scatter(data2[:, 0], data2[:, 1], c=y2, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data2, axis=0)
x1_max, x2_max = np.max(data2, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同方差的原始数据')
plt.grid(True)
6、不同方差簇数据的K-Means算法聚类结果
plt.subplot(246)
plt.scatter(data2[:, 0], data2[:, 1], c=y_hat2, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同方差簇数据的K-Means算法聚类结果')
plt.grid(True)
7、不同簇样本数量原始数据图
plt.subplot(247)
plt.scatter(data3[:, 0], data3[:, 1], c=y3, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data3, axis=0)
x1_max, x2_max = np.max(data3, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同簇样本数量原始数据图')
plt.grid(True)
8、不同簇样本数量的K-Means算法聚类结果
plt.subplot(248)
plt.scatter(data3[:, 0], data3[:, 1], c=y_hat3, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同簇样本数量的K-Means算法聚类结果')
plt.grid(True)
plt.tight_layout(2, rect=(0, 0, 1, 0.97))
plt.suptitle(u'数据分布对KMeans聚类的影响', fontsize=18)
plt.show()

05 聚类算法 - 二分K-Means、K-Means++、K-Means||、Canopy、Mini Batch K-Means算法

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351