反向传播的些许思考 2019-04-30

反向传播的些许思考

1 先看下面的关于概率计算的一个例子

科技袁人视频

先看问题:有A、B两位球员分别参加了大师赛和菜鸟赛,(这两个赛事无论从哪个看都是球员A更优秀,可是统计结果却显示球员B比球员A更优秀,这时为什么?是我们经常用的统计学原理出错啦? 辛普森悖论

(10/80):代表球员参加了80场赛,总共胜了10场

球员A 球员B
大师赛 10% (8/80) 5% (1/20)
菜鸟赛 100% (20/20) 50% (40/80)
统计 28% (28/100) 41% (41/100)

2:引入积分

通过引入积分来解决这个问题,就是分别对大师赛、菜鸟赛的胜率乘以积分得出一个(0-1)的结果!你看我们用统计,简单的乘除还是能够很优秀的处理这类问题的嘛!

球员A 球员B 积分
大师赛 10% (8/80) 5% (1/20) 0.8
菜鸟赛 100% (20/20) 50% (40/80) 0.2
统计 0.28 0.14

3:二项式小球问题

然后我们来看这个问题

(1/4):表示容器中有4个小球,在某次事件中小于等于1个小球发生的概率

容器A 容器B 积分
小球占比 25% (1/4) 25% (2/8) 25% (200/800)
统计 (c_{4}^{1}+ c_{4}^{0})/2^{4} (c_{8}^{0}+c_{8}^{1}+c_{8}^{2})/2^{8} \frac{\sum_{i=1}^{200} C_{800}^{i}}{2^{800}}

我们看到小球占比一致的情况下,统计的概率也会有较大的偏差,在小球个数很大的情况下,概率可以用正态分布的函数求出来,这时我们以前常用的方法就再也不实用了。

正太分布图


xx

4: 引入函数(分子内部的激烈程度,或者可以把它想象为灯的亮度)

熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度。在信息论里面,熵是对不确定性的测量

前面写了那么多东西只是为了启发你为什么要引入下面这个公式:
J=-P*log(P)+(1-P)*log(1-P)

  • ps: 图中的log是用以2为底进行绘制的

请看下面这个图,他跟正太分布函数近似,我们可以把它看做分子内部的激烈程度的一个函数,当容器中的小球刚好到一半的时候,分子的激烈重度最强,或者说这个状态下的不确定性最大


熵.png
xx

5: 反向传播

反向传播理论

6: 为什么引入sigmoid函数

通过这个方程的引入,我们可以把任何实数限制到0-1内


7 一个简单的实例

随机生成一个100*3的输入,用一个3*1的theta对它进行一次变换,,运用反向传播的方法逼近theta的值,最小化J

当然这个问题可以用最小二乘的方法一步到位的求出来,写这个代码的目的,是为了思考

  • sigmoid的偏导为什么是 f(x)*(1-f(x)
  • theta 为什么是这么更新 lamda * x' * g
  • J 在吴恩达的教程中明明不是这么表达的!为什么吴恩达的那个公式不妥!应用条件是什么
    clear all;clc;
    x = rand(1000,3);
    m = length(x);
    lamda = 0.01;
    theta = rand(3,1);
    z = x*theta;
    y = 1./(1+exp(-z));
        
    theta_start = [0.2; 0.3; 0.4];
    n_feature = length(theta_start);
    period = 100;
    save_theta = zeros(n_feature , period);
        
    for i = 1:period
        new_z = x * theta_start;
        p_y = 1./(1+exp(-new_z));
        % 输出偏差平方和
        J(i) = (y - p_y)'*(y-p_y)/2/m ;
        %f(x)的偏导是f(x)*(1-f(x))
        diff_fx = p_y.*(1-p_y);
        %输出的对theta的偏导为
        g = (y-p_y).*diff_fx  ;
        %对theta进行更新
        theta_start = theta_start + lamda * x' * g;
        save_theta(:,i) = theta_start;
    end
        
    j = 1:period;
    figure(1);
    hold on
    plot(j, J*m /5)
    plot([1 1 1;period period period],[theta theta]')
    plot([j; j; j]' , save_theta')
    hold off
xx

8 吴恩达视频教程的作业

xx
sigmoid.png
t1_slide = Theta1(2:end);
t2_slide = Theta2(2:end);

add_slide = sum(sum(t1_slide.^2,1),2) + sum(sum(t2_slide.^2, 1),2) ;
add_slide = add_slide * lambda/ 2/ m;

a1_add = [ones(size(X,1),1) X];

z2 =   a1_add * transpose(Theta1);
a2 = 1 ./ (1 + exp(-z2)) ;

a2_add = [ones(size(a2,1),1) a2];
z3 = a2_add * transpose(Theta2);
a3 = 1 ./ (1 + exp(-z3)) ;
real_y = zeros(size(z3));
for i = 1:m
    index = y(i);
    real_y(i, index) = 1;
end
xx.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容