职责链模式
在现实生活中,一个事件需要经过多个对象处理是很常见的场景。例如,采购审批流程、请假流程等。公司员工请假,可批假的领导有部门负责人、副总经理、总经理等,但每个领导能批准的天数不同,员工必须根据需要请假的天数去找不同的领导签名,也就是说员工必须记住每个领导的姓名、电话和地址等信息,这无疑增加了难度。
在计算机软硬件中也有相关例子,如总线网中数据报传送,每台计算机根据目标地址是否同自己的地址相同来决定是否接收;还有异常处理中,处理程序根据异常的类型决定自己是否处理该异常;还有 Struts2 的拦截器、JSP 和 Servlet 的 Filter 等,所有这些,都可以考虑使用责任链模式来实现。
模式的定义与特点
责任链(Chain of Responsibility)模式的定义:为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链;当有请求发生时,可将请求沿着这条链传递,直到有对象处理它为止。
注意:责任链模式也叫职责链模式。
在责任链模式中,客户只需要将请求发送到责任链上即可,无须关心请求的处理细节和请求的传递过程,请求会自动进行传递。所以责任链将请求的发送者和请求的处理者解耦了。
责任链模式是一种对象行为型模式,其主要优点如下。
降低了对象之间的耦合度。该模式使得一个对象无须知道到底是哪一个对象处理其请求以及链的结构,发送者和接收者也无须拥有对方的明确信息。
增强了系统的可扩展性。可以根据需要增加新的请求处理类,满足开闭原则。
增强了给对象指派职责的灵活性。当工作流程发生变化,可以动态地改变链内的成员或者调动它们的次序,也可动态地新增或者删除责任。
责任链简化了对象之间的连接。每个对象只需保持一个指向其后继者的引用,不需保持其他所有处理者的引用,这避免了使用众多的 if 或者 if···else 语句。
责任分担。每个类只需要处理自己该处理的工作,不该处理的传递给下一个对象完成,明确各类的责任范围,符合类的单一职责原则。
其主要缺点如下。
不能保证每个请求一定被处理。由于一个请求没有明确的接收者,所以不能保证它一定会被处理,该请求可能一直传到链的末端都得不到处理。
对比较长的职责链,请求的处理可能涉及多个处理对象,系统性能将受到一定影响。
职责链建立的合理性要靠客户端来保证,增加了客户端的复杂性,可能会由于职责链的错误设置而导致系统出错,如可能会造成循环调用。
模式的结构与实现
通常情况下,可以通过数据链表来实现职责链模式的数据结构。
1. 模式的结构
职责链模式主要包含以下角色。
抽象处理者(Handler)角色:定义一个处理请求的接口,包含抽象处理方法和一个后继连接。
具体处理者(Concrete Handler)角色:实现抽象处理者的处理方法,判断能否处理本次请求,如果可以处理请求则处理,否则将该请求转给它的后继者。
客户类(Client)角色:创建处理链,并向链头的具体处理者对象提交请求,它不关心处理细节和请求的传递过程。
责任链模式的本质是解耦请求与处理,让请求在处理链中能进行传递与被处理;理解责任链模式应当理解其模式,而不是其具体实现。责任链模式的独到之处是将其节点处理者组合成了链式结构,并允许节点自身决定是否进行请求处理或转发,相当于让请求流动起来。
其结构图如图 1 所示。客户端可按图 2 所示设置责任链。
2. 模式的实现
职责链模式的实现代码如下:
package chainOfResponsibility;
public class ChainOfResponsibilityPattern {
public static void main(String[] args) {
//组装责任链
Handler handler1 = new ConcreteHandler1();
Handler handler2 = new ConcreteHandler2();
handler1.setNext(handler2);
//提交请求
handler1.handleRequest("two");
}
}
//抽象处理者角色
abstract class Handler {
private Handler next;
public void setNext(Handler next) {
this.next = next;
}
public Handler getNext() {
return next;
}
//处理请求的方法
public abstract void handleRequest(String request);
}
//具体处理者角色1
class ConcreteHandler1 extends Handler {
public void handleRequest(String request) {
if (request.equals("one")) {
System.out.println("具体处理者1负责处理该请求!");
} else {
if (getNext() != null) {
getNext().handleRequest(request);
} else {
System.out.println("没有人处理该请求!");
}
}
}
}
//具体处理者角色2
class ConcreteHandler2 extends Handler {
public void handleRequest(String request) {
if (request.equals("two")) {
System.out.println("具体处理者2负责处理该请求!");
} else {
if (getNext() != null) {
getNext().handleRequest(request);
} else {
System.out.println("没有人处理该请求!");
}
}
}
}
程序运行结果如下:
具体处理者2负责处理该请求!
在上面代码中,我们把消息硬编码为 String 类型,而在真实业务中,消息是具备多样性的,可以是 int、String 或者自定义类型。因此,在上面代码的基础上,可以对消息类型进行抽象 Request,增强了消息的兼容性。
状态模式
在软件开发过程中,应用程序中的部分对象可能会根据不同的情况做出不同的行为,我们把这种对象称为有状态的对象,而把影响对象行为的一个或多个动态变化的属性称为状态。当有状态的对象与外部事件产生互动时,其内部状态就会发生改变,从而使其行为也发生改变。如人都有高兴和伤心的时候,不同的情绪有不同的行为,当然外界也会影响其情绪变化。
对这种有状态的对象编程,传统的解决方案是:将这些所有可能发生的情况全都考虑到,然后使用 if-else 或 switch-case 语句来做状态判断,再进行不同情况的处理。但是显然这种做法对复杂的状态判断存在天然弊端,条件判断语句会过于臃肿,可读性差,且不具备扩展性,维护难度也大。且增加新的状态时要添加新的 if-else 语句,这违背了“开闭原则”,不利于程序的扩展。
以上问题如果采用“状态模式”就能很好地得到解决。状态模式的解决思想是:当控制一个对象状态转换的条件表达式过于复杂时,把相关“判断逻辑”提取出来,用各个不同的类进行表示,系统处于哪种情况,直接使用相应的状态类对象进行处理,这样能把原来复杂的逻辑判断简单化,消除了 if-else、switch-case 等冗余语句,代码更有层次性,并且具备良好的扩展力。
状态模式的定义与特点
状态(State)模式的定义:对有状态的对象,把复杂的“判断逻辑”提取到不同的状态对象中,允许状态对象在其内部状态发生改变时改变其行为。
状态模式是一种对象行为型模式,其主要优点如下。
结构清晰,状态模式将与特定状态相关的行为局部化到一个状态中,并且将不同状态的行为分割开来,满足“单一职责原则”。
将状态转换显示化,减少对象间的相互依赖。将不同的状态引入独立的对象中会使得状态转换变得更加明确,且减少对象间的相互依赖。
状态类职责明确,有利于程序的扩展。通过定义新的子类很容易地增加新的状态和转换。
状态模式的主要缺点如下。
状态模式的使用必然会增加系统的类与对象的个数。
状态模式的结构与实现都较为复杂,如果使用不当会导致程序结构和代码的混乱。
状态模式对开闭原则的支持并不太好,对于可以切换状态的状态模式,增加新的状态类需要修改那些负责状态转换的源码,否则无法切换到新增状态,而且修改某个状态类的行为也需要修改对应类的源码。
状态模式的结构与实现
状态模式把受环境改变的对象行为包装在不同的状态对象里,其意图是让一个对象在其内部状态改变的时候,其行为也随之改变。现在我们来分析其基本结构和实现方法。
1. 模式的结构
状态模式包含以下主要角色。
环境类(Context)角色:也称为上下文,它定义了客户端需要的接口,内部维护一个当前状态,并负责具体状态的切换。
抽象状态(State)角色:定义一个接口,用以封装环境对象中的特定状态所对应的行为,可以有一个或多个行为。
具体状态(Concrete State)角色:实现抽象状态所对应的行为,并且在需要的情况下进行状态切换。
其结构图如图 1 所示。
2. 模式的实现
状态模式的实现代码如下:
public class StatePatternClient {
public static void main(String[] args) {
Context context = new Context(); //创建环境
context.Handle(); //处理请求
context.Handle();
context.Handle();
context.Handle();
}
}
//环境类
class Context {
private State state;
//定义环境类的初始状态
public Context() {
this.state = new ConcreteStateA();
}
//设置新状态
public void setState(State state) {
this.state = state;
}
//读取状态
public State getState() {
return (state);
}
//对请求做处理
public void Handle() {
state.Handle(this);
}
}
//抽象状态类
abstract class State {
public abstract void Handle(Context context);
}
//具体状态A类
class ConcreteStateA extends State {
public void Handle(Context context) {
System.out.println("当前状态是 A.");
context.setState(new ConcreteStateB());
}
}
//具体状态B类
class ConcreteStateB extends State {
public void Handle(Context context) {
System.out.println("当前状态是 B.");
context.setState(new ConcreteStateA());
}
}
程序运行结果如下:
当前状态是 A.
当前状态是 B.
当前状态是 A.
当前状态是 B.
状态模式与责任链模式的区别
状态模式和责任链模式都能消除 if-else 分支过多的问题。但在某些情况下,状态模式中的状态可以理解为责任,那么在这种情况下,两种模式都可以使用。
从定义来看,状态模式强调的是一个对象内在状态的改变,而责任链模式强调的是外部节点对象间的改变。
从代码实现上来看,两者最大的区别就是状态模式的各个状态对象知道自己要进入的下一个状态对象,而责任链模式并不清楚其下一个节点处理对象,因为链式组装由客户端负责。
状态模式与策略模式的区别
状态模式和策略模式的 UML 类图架构几乎完全一样,但两者的应用场景是不一样的。策略模式的多种算法行为择其一都能满足,彼此之间是独立的,用户可自行更换策略算法,而状态模式的各个状态间存在相互关系,彼此之间在一定条件下存在自动切换状态的效果,并且用户无法指定状态,只能设置初始状态。
状态模式的应用实例
【例1】用“状态模式”设计一个学生成绩的状态转换程序。
分析:本实例包含了“不及格”“中等”和“优秀” 3 种状态,当学生的分数小于 60 分时为“不及格”状态,当分数大于等于 60 分且小于 90 分时为“中等”状态,当分数大于等于 90 分时为“优秀”状态,我们用状态模式来实现这个程序。
首先,定义一个抽象状态类(AbstractState),其中包含了环境属性、状态名属性和当前分数属性,以及加减分方法 addScore(intx) 和检查当前状态的抽象方法 checkState()。
然后,定义“不及格”状态类 LowState、“中等”状态类 MiddleState 和“优秀”状态类 HighState,它们是具体状态类,实现 checkState() 方法,负责检査自己的状态,并根据情况转换。
最后,定义环境类(ScoreContext),其中包含了当前状态对象和加减分的方法 add(int score),客户类通过该方法来改变成绩状态。图 2 所示是其结构图。
![图2 学生成绩的状态转换程序的结构图]
(https://upload-images.jianshu.io/upload_images/2571891-a816df53ab09c57f.gif?imageMogr2/auto-orient/strip)
程序代码如下:
public class ScoreStateTest {
public static void main(String[] args) {
ScoreContext account = new ScoreContext();
System.out.println("学生成绩状态测试:");
account.add(30);
account.add(40);
account.add(25);
account.add(-15);
account.add(-25);
}
}
//环境类
class ScoreContext {
private AbstractState state;
ScoreContext() {
state = new LowState(this);
}
public void setState(AbstractState state) {
this.state = state;
}
public AbstractState getState() {
return state;
}
public void add(int score) {
state.addScore(score);
}
}
//抽象状态类
abstract class AbstractState {
protected ScoreContext hj; //环境
protected String stateName; //状态名
protected int score; //分数
public abstract void checkState(); //检查当前状态
public void addScore(int x) {
score += x;
System.out.print("加上:" + x + "分,\t当前分数:" + score);
checkState();
System.out.println("分,\t当前状态:" + hj.getState().stateName);
}
}
//具体状态类:不及格
class LowState extends AbstractState {
public LowState(ScoreContext h) {
hj = h;
stateName = "不及格";
score = 0;
}
public LowState(AbstractState state) {
hj = state.hj;
stateName = "不及格";
score = state.score;
}
public void checkState() {
if (score >= 90) {
hj.setState(new HighState(this));
} else if (score >= 60) {
hj.setState(new MiddleState(this));
}
}
}
//具体状态类:中等
class MiddleState extends AbstractState {
public MiddleState(AbstractState state) {
hj = state.hj;
stateName = "中等";
score = state.score;
}
public void checkState() {
if (score < 60) {
hj.setState(new LowState(this));
} else if (score >= 90) {
hj.setState(new HighState(this));
}
}
}
//具体状态类:优秀
class HighState extends AbstractState {
public HighState(AbstractState state) {
hj = state.hj;
stateName = "优秀";
score = state.score;
}
public void checkState() {
if (score < 60) {
hj.setState(new LowState(this));
} else if (score < 90) {
hj.setState(new MiddleState(this));
}
}
}
程序运行结果如下:
学生成绩状态测试:
加上:30分, 当前分数:30分, 当前状态:不及格
加上:40分, 当前分数:70分, 当前状态:中等
加上:25分, 当前分数:95分, 当前状态:优秀
加上:-15分, 当前分数:80分, 当前状态:中等
加上:-25分, 当前分数:55分, 当前状态:不及格![Q11615425V39.gif](https://upload-images.jianshu.io/upload_images/2571891-cad98bc7495d6347.gif?imageMogr2/auto-orient/strip)
观察者模式
在现实世界中,许多对象并不是独立存在的,其中一个对象的行为发生改变可能会导致一个或者多个其他对象的行为也发生改变。例如,某种商品的物价上涨时会导致部分商家高兴,而消费者伤心;还有,当我们开车到交叉路口时,遇到红灯会停,遇到绿灯会行。这样的例子还有很多,例如,股票价格与股民、微信公众号与微信用户、气象局的天气预报与听众、小偷与警察等。在软件世界也是这样,例如,Excel 中的数据与折线图、饼状图、柱状图之间的关系;MVC 模式中的模型与视图的关系;事件模型中的事件源与事件处理者。所有这些,如果用观察者模式来实现就非常方便。
模式的定义与特点
观察者(Observer)模式的定义:指多个对象间存在一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式、模型-视图模式,它是对象行为型模式。观察者模式是一种对象行为型模式,
其主要优点如下。
降低了目标与观察者之间的耦合关系,两者之间是抽象耦合关系。符合依赖倒置原则。
目标与观察者之间建立了一套触发机制。
它的主要缺点如下。
目标与观察者之间的依赖关系并没有完全解除,而且有可能出现循环引用。
当观察者对象很多时,通知的发布会花费很多时间,影响程序的效率。
模式的结构与实现
实现观察者模式时要注意具体目标对象和具体观察者对象之间不能直接调用,否则将使两者之间紧密耦合起来,这违反了面向对象的设计原则。
1. 模式的结构观察者模式的主要角色如下。
抽象主题(Subject)角色:也叫抽象目标类,它提供了一个用于保存观察者对象的聚集类和增加、删除观察者对象的方法,以及通知所有观察者的抽象方法。
具体主题(Concrete Subject)角色:也叫具体目标类,它实现抽象目标中的通知方法,当具体主题的内部状态发生改变时,通知所有注册过的观察者对象。
抽象观察者(Observer)角色:它是一个抽象类或接口,它包含了一个更新自己的抽象方法,当接到具体主题的更改通知时被调用。
具体观察者(Concrete Observer)角色:实现抽象观察者中定义的抽象方法,以便在得到目标的更改通知时更新自身的状态。观察者模式的结构图如图 1 所示。
图1 观察者模式的结构图
2. 模式的实现观察者模式的实现代码如下:
package net.biancheng.c.observer;
import java.util.*;
public class ObserverPattern {
public static void main(String[] args) {
Subject subject = new ConcreteSubject();
Observer obs1 = new ConcreteObserver1();
Observer obs2 = new ConcreteObserver2();
subject.add(obs1);
subject.add(obs2);
subject.notifyObserver();
}
}
//抽象目标
abstract class Subject {
protected List<Observer> observers = new ArrayList<Observer>();
//增加观察者方法
public void add(Observer observer) {
observers.add(observer);
}
//删除观察者方法
public void remove(Observer observer) {
observers.remove(observer);
}
public abstract void notifyObserver(); //通知观察者方法
}
//具体目标
class ConcreteSubject extends Subject {
public void notifyObserver() {
System.out.println("具体目标发生改变...");
System.out.println("--------------");
for (Object obs : observers) {
((Observer) obs).response();
}
}
}
//抽象观察者
interface Observer {
void response(); //反应
}
//具体观察者1
class ConcreteObserver1 implements Observer {
public void response() {
System.out.println("具体观察者1作出反应!");
}
}
//具体观察者1
class ConcreteObserver2 implements Observer {
public void response() {
System.out.println("具体观察者2作出反应!");
}
}
程序运行结果如下:
具体目标发生改变...
--------------
具体观察者1作出反应!
具体观察者2作出反应!
中介者模式
在现实生活中,常常会出现好多对象之间存在复杂的交互关系,这种交互关系常常是“网状结构”,它要求每个对象都必须知道它需要交互的对象。例如,每个人必须记住他(她)所有朋友的电话;而且,朋友中如果有人的电话修改了,他(她)必须让其他所有的朋友一起修改,这叫作“牵一发而动全身”,非常复杂。
如果把这种“网状结构”改为“星形结构”的话,将大大降低它们之间的“耦合性”,这时只要找一个“中介者”就可以了。如前面所说的“每个人必须记住所有朋友电话”的问题,只要在网上建立一个每个朋友都可以访问的“通信录”就解决了。这样的例子还有很多,例如,你刚刚参加工作想租房,可以找“房屋中介”;或者,自己刚刚到一个陌生城市找工作,可以找“人才交流中心”帮忙。
在软件的开发过程中,这样的例子也很多,例如,在 MVC 框架中,控制器(C)就是模型(M)和视图(V)的中介者;还有大家常用的 QQ 聊天程序的“中介者”是 QQ 服务器。所有这些,都可以采用“中介者模式”来实现,它将大大降低对象之间的耦合性,提高系统的灵活性。
模式的定义与特点
中介者(Mediator)模式的定义:定义一个中介对象来封装一系列对象之间的交互,使原有对象之间的耦合松散,且可以独立地改变它们之间的交互。中介者模式又叫调停模式,它是迪米特法则的典型应用。
中介者模式是一种对象行为型模式,其主要优点如下。
类之间各司其职,符合迪米特法则。
降低了对象之间的耦合性,使得对象易于独立地被复用。
将对象间的一对多关联转变为一对一的关联,提高系统的灵活性,使得系统易于维护和扩展。
其主要缺点是:
中介者模式将原本多个对象直接的相互依赖变成了中介者和多个同事类的依赖关系。当同事类越多时,中介者就会越臃肿,变得复杂且难以维护。
模式的结构与实现
中介者模式实现的关键是找出“中介者”,下面对它的结构和实现进行分析。
1. 模式的结构
中介者模式包含以下主要角色。
抽象中介者(Mediator)角色:它是中介者的接口,提供了同事对象注册与转发同事对象信息的抽象方法。
具体中介者(Concrete Mediator)角色:实现中介者接口,定义一个 List 来管理同事对象,协调各个同事角色之间的交互关系,因此它依赖于同事角色。
抽象同事类(Colleague)角色:定义同事类的接口,保存中介者对象,提供同事对象交互的抽象方法,实现所有相互影响的同事类的公共功能。
具体同事类(Concrete Colleague)角色:是抽象同事类的实现者,当需要与其他同事对象交互时,由中介者对象负责后续的交互。
中介者模式的结构图如图 1 所示。
2. 模式的实现
中介者模式的实现代码如下:
package net.biancheng.c.mediator;
import java.util.*;
public class MediatorPattern {
public static void main(String[] args) {
Mediator md = new ConcreteMediator();
Colleague c1, c2;
c1 = new ConcreteColleague1();
c2 = new ConcreteColleague2();
md.register(c1);
md.register(c2);
c1.send();
System.out.println("-------------");
c2.send();
}
}
//抽象中介者
abstract class Mediator {
public abstract void register(Colleague colleague);
public abstract void relay(Colleague cl); //转发
}
//具体中介者
class ConcreteMediator extends Mediator {
private List<Colleague> colleagues = new ArrayList<Colleague>();
public void register(Colleague colleague) {
if (!colleagues.contains(colleague)) {
colleagues.add(colleague);
colleague.setMedium(this);
}
}
public void relay(Colleague cl) {
//转发给非自己的接收者
for (Colleague ob : colleagues) {
if (!ob.equals(cl)) {
((Colleague) ob).receive();
}
}
}
}
//抽象同事类
abstract class Colleague {
protected Mediator mediator;
public void setMedium(Mediator mediator) {
this.mediator = mediator;
}
public abstract void receive();
public abstract void send();
}
//具体同事类
class ConcreteColleague1 extends Colleague {
public void receive() {
System.out.println("具体同事类1收到请求。");
}
public void send() {
System.out.println("具体同事类1发出请求。");
mediator.relay(this); //请中介者转发
}
}
//具体同事类
class ConcreteColleague2 extends Colleague {
public void receive() {
System.out.println("具体同事类2收到请求。");
}
public void send() {
System.out.println("具体同事类2发出请求。");
mediator.relay(this); //请中介者转发
}
}
程序的运行结果如下:
具体同事类1发出请求。
具体同事类2收到请求。
-------------
具体同事类2发出请求。
具体同事类1收到请求。
迭代器模式
在现实生活以及程序设计中,经常要访问一个聚合对象中的各个元素,如“数据结构”中的链表遍历,通常的做法是将链表的创建和遍历都放在同一个类中,但这种方式不利于程序的扩展,如果要更换遍历方法就必须修改程序源代码,这违背了 “开闭原则”。
既然将遍历方法封装在聚合类中不可取,那么聚合类中不提供遍历方法,将遍历方法由用户自己实现是否可行呢?答案是同样不可取,因为这种方式会存在两个缺点:
暴露了聚合类的内部表示,使其数据不安全;
增加了客户的负担。
“迭代器模式”能较好地克服以上缺点,它在客户访问类与聚合类之间插入一个迭代器,这分离了聚合对象与其遍历行为,对客户也隐藏了其内部细节,且满足“单一职责原则”和“开闭原则”,如 Java 中的 Collection、List、Set、Map 等都包含了迭代器。
迭代器模式在生活中应用的比较广泛,比如:物流系统中的传送带,不管传送的是什么物品,都会被打包成一个个箱子,并且有一个统一的二维码。这样我们不需要关心箱子里是什么,在分发时只需要一个个检查发送的目的地即可。再比如,我们平时乘坐交通工具,都是统一刷卡或者刷脸进站,而不需要关心是男性还是女性、是残疾人还是正常人等信息。
模式的定义与特点
迭代器(Iterator)模式的定义:提供一个对象来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。迭代器模式是一种对象行为型模式,其主要优点如下。
访问一个聚合对象的内容而无须暴露它的内部表示。
遍历任务交由迭代器完成,这简化了聚合类。
它支持以不同方式遍历一个聚合,甚至可以自定义迭代器的子类以支持新的遍历。
增加新的聚合类和迭代器类都很方便,无须修改原有代码。
封装性良好,为遍历不同的聚合结构提供一个统一的接口。
其主要缺点是:增加了类的个数,这在一定程度上增加了系统的复杂性。
在日常开发中,我们几乎不会自己写迭代器。除非需要定制一个自己实现的数据结构对应的迭代器,否则,开源框架提供的 API 完全够用。
模式的结构与实现
迭代器模式是通过将聚合对象的遍历行为分离出来,抽象成迭代器类来实现的,其目的是在不暴露聚合对象的内部结构的情况下,让外部代码透明地访问聚合的内部数据。现在我们来分析其基本结构与实现方法。
1. 模式的结构
迭代器模式主要包含以下角色。
抽象聚合(Aggregate)角色:定义存储、添加、删除聚合对象以及创建迭代器对象的接口。
具体聚合(ConcreteAggregate)角色:实现抽象聚合类,返回一个具体迭代器的实例。
抽象迭代器(Iterator)角色:定义访问和遍历聚合元素的接口,通常包含 hasNext()、first()、next() 等方法。
具体迭代器(Concretelterator)角色:实现抽象迭代器接口中所定义的方法,完成对聚合对象的遍历,记录遍历的当前位置。
其结构图如图 1 所示。
2. 模式的实现
迭代器模式的实现代码如下:
package net.biancheng.c.iterator;
import java.util.*;
public class IteratorPattern {
public static void main(String[] args) {
Aggregate ag = new ConcreteAggregate();
ag.add("中山大学");
ag.add("华南理工");
ag.add("韶关学院");
System.out.print("聚合的内容有:");
Iterator it = ag.getIterator();
while (it.hasNext()) {
Object ob = it.next();
System.out.print(ob.toString() + "\t");
}
Object ob = it.first();
System.out.println("\nFirst:" + ob.toString());
}
}
//抽象聚合
interface Aggregate {
public void add(Object obj);
public void remove(Object obj);
public Iterator getIterator();
}
//具体聚合
class ConcreteAggregate implements Aggregate {
private List<Object> list = new ArrayList<Object>();
public void add(Object obj) {
list.add(obj);
}
public void remove(Object obj) {
list.remove(obj);
}
public Iterator getIterator() {
return (new ConcreteIterator(list));
}
}
//抽象迭代器
interface Iterator {
Object first();
Object next();
boolean hasNext();
}
//具体迭代器
class ConcreteIterator implements Iterator {
private List<Object> list = null;
private int index = -1;
public ConcreteIterator(List<Object> list) {
this.list = list;
}
public boolean hasNext() {
if (index < list.size() - 1) {
return true;
} else {
return false;
}
}
public Object first() {
index = 0;
Object obj = list.get(index);
;
return obj;
}
public Object next() {
Object obj = null;
if (this.hasNext()) {
obj = list.get(++index);
}
return obj;
}
}
程序运行结果如下:
聚合的内容有:中山大学 华南理工 韶关学院
First:中山大学