numpy中的np.ascontiguousarray()函数

Numpy文档中的说明:

"Return a contiguous array (ndim >= 1) in memory (C order)."

用途

ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快。


C order vs Fortran order

  • C order 指的是行优先的顺序(Row-major Order),即内存中同行的元素存在一起,
  • Fortran Order则指的是列优先的顺序(Column-major Order),即内存中同列的元素存在一起。

Pascal, C,C++,Python都是行优先存储的,而Fortran,MatLab是列优先存储的。


Contiguous array

contiguous array指的是数组在内存中存放的地址也是连续的(注意内存地址实际是一维的)。

2维数组arr = np.arange(12).reshape(3,4)。数组结构如下

image

内存里中实际存储如下:

image

arrC order 的,在内存是行优先的。如果想要向下移动一列,则需要跳过3个块(例如,从0到4只需要跳过1,2和3)。

如果经过转置,arr.T没有了C连续特性,因为内存中元素的地址不变,同一行中的相邻元素在内存中不是连续的:

image

这时,arr.T变成了Fortran order,因为相邻列中的元素在内存中是相邻存储的。

从性能上来说,获取内存中相邻的地址比不相邻的地址速度要快很多(从RAM读取一个数值的时候可以连着一起读一块地址中的数值,并且可以保存在Cache中),这意味着对连续数组的操作会快很多。

由于arr是C连续的,因此对其进行行操作比进行列操作速度要快。通常来说

np.sum(arr, axis=1) # 按行求和

会比

np.sum(arr, axis=0) # 按列求和

稍微快些。
同理,在arr.T上,列操作比行操作会快些。


使用 np.ascontiguousarray()

  • Numpy中,随机初始化的数组默认都是C连续的。

  • 经过不规则的slice操作,则会改变连续性,可能会变成既不是C连续,也不是Fortran连续的。

  • 可以通过数组的.flags属性,查看一个数组是C连续还是Fortran连续的

>>> import numpy as np
>>> arr = np.arange(12).reshape(3, 4)
>>> arr.flags
    C_CONTIGUOUS : True
    F_CONTIGUOUS : False
    OWNDATA : False
    WRITEABLE : True
    ALIGNED : True
    WRITEBACKIFCOPY : False
    UPDATEIFCOPY : False

从输出可以看到数组arr是C连续的。
arr进行按列的slice操作,不改变每行的值,则还是C连续的:

>>> arr
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
>>> arr1 = arr[:2, :]
>>> arr1
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]])
>>> arr1.flags
    C_CONTIGUOUS : True
    F_CONTIGUOUS : False
    OWNDATA : False
    WRITEABLE : True
    ALIGNED : True
    WRITEBACKIFCOPY : False
    UPDATEIFCOPY : False

如果进行在行上的slice,则会改变连续性,成为既不C连续,也不Fortran连续的:


>>> arr1 = arr[:, 1:3]
>>> arr1.flags
    C_CONTIGUOUS : False
    F_CONTIGUOUS : False
    OWNDATA : False
    WRITEABLE : True
    ALIGNED : True
    WRITEBACKIFCOPY : False
    UPDATEIFCOPY : False

此时利用ascontiguousarray函数,可以将其变为连续的:


>>> arr2 = np.ascontiguousarray(arr1)
>>> arr2.flags
    C_CONTIGUOUS : True
    F_CONTIGUOUS : False
    OWNDATA : True
    WRITEABLE : True
    ALIGNED : True
    WRITEBACKIFCOPY : False
    UPDATEIFCOPY : False

参考

本篇文章由一文多发平台ArtiPub自动发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355