买卖股票的最佳时机iv

func maxProfit(k int, prices []int) int {
profit := 0
if k >= len(prices)/2 { //无限次交易,贪心算法
for i := 0; i < len(prices)-1; i++ {
if prices[i] < prices[i+1] {
profit += prices[i+1] - prices[i]
}
}
return profit
}
//规定次数交易,动态规划
profit_0 := make([][]int, len(prices)) //不持有股票
profit_1 := make([][]int, len(prices)) //持有股票
//创建二维切片
for i := 0; i < len(prices); i++ {
profit_0[i] = make([]int, k+1)
profit_1[i] = make([]int, k+1)
}
//初始化第一天
for j := 0; j <= k; j++ {
// 第0天如果持有股票的状态,init
profit_1[0][j] = -prices[0]
}
//状态转移方程
for x := 1; x < len(prices); x++ { //遍历每天股票价格
for y := 1; y < k+1; y++ { //遍历每次交易
profit_0[x][y] = max(profit_0[x-1][y], profit_1[x-1][y]+prices[x])
if profit < profit_0[x][y] {
profit = profit_0[x][y]
}
profit_1[x][y] = max(profit_1[x-1][y], profit_0[x-1][y-1]-prices[x])
}
}
return profit
}

func max(x int,y int) int{
if x<y{
return y
}
return x
}

作者:li-xiao-xi
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv/solution/zai-suo-you-go-ti-jiao-zhong-ji-bai-liao-9853-de-y/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
作者:labuladong
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv/solution/yi-ge-tong-yong-fang-fa-tuan-mie-6-dao-gu-piao-w-5/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
关键这里的i代表天数,k代表第k次交易。
而i又代表价格。所有i是price的长度循环。

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 rest , 选择 sell )

解释:今天我没有持有股票,有两种可能:
要么是我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
要么是我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 rest , 选择 buy )

解释:今天我持有着股票,有两种可能:
要么我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
要么我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。

作者:labuladong
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv/solution/yi-ge-tong-yong-fang-fa-tuan-mie-6-dao-gu-piao-w-5/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

如果光从i,k来看,就是一个二维矩阵,因此我们从上到下,从左到右遍历。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352