《机器学习实战》学习笔记 k-近邻算法

算法执行步骤:
对未知类别属性的数据集中的每个点依次执行以下操作:
1)计算已知类别数据集中的点与当前点之间的距离;
2)按照距离递增次序进行排序;
3)选取与当前点距离最小的k个点;
4)确定前k个点所在类别的出现频率;
5)返回前k个点出现频率最高的类别作为当前点的预测分类。
k的取值不大于20
适用于数值型和标称型数据的分类
不需要提前训练,即用即练。

实现代码如下:

from numpy import *
import operator

def createDataSet():
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0],[0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

def classify(intX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]    #shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数
    diffMat = tile(intX, (dataSetSize, 1)) - dataSet    #tile(A, B),将A按B的格式要求进行重复,B可以是int(此时在列上重复,行默认重复一次)
                                                       #若B为元祖(a,b),则在行上重复a次,列上重复b次
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis=1)    #axis=0表示按列相加,axis=1表示按照行相加
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort()    #得到数组值从小到大的索引值
    #print(sortedDistIndicies)
    classCount = {}
    for i in range(k):
        voteLabel = labels[sortedDistIndicies[i]]
        classCount[voteLabel] = classCount.get(voteLabel, 0) + 1    #get()返回指定键的值, 如果指定键的值不存在时,返回默认值值(此处为0)
                                                                    #此处即为记录每个入选标签在所有入选标签中出现的次数
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse=True)    #items() 函数以列表返回可遍历的(键,值)元组
    return sortedClassCount[0][0]

if __name__ == '__main__':
    group, labels = createDataSet()
    result = classify([0, 0], group, labels, 3)
    print(result)

执行结果

[2 3 1 0]
B

上面是k-近邻算法的基本实现,为了完全理解算法在实际过程中的应用,还做了个有关约会对象是否为理想对象的实战练习,源码:https://github.com/YanniYao/algorithm_in_machine_learning/tree/master/kNN_exercise

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容