下面是维基百科上的描述:
Jump to search
In the mathematical field of graph theory, the Laplacian matrix, sometimes called admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. The Laplacian matrix can be used to find many useful properties of a graph. Together with Kirchhoff's theorem, it can be used to calculate the number of spanning trees for a given graph. The sparsest cut of a graph can be approximated through the second smallest eigenvalue of its Laplacian by Cheeger's inequality. It can also be used to construct low dimensional embeddings, which can be useful for a variety of machine learning applications.
大意是说:在图算法领域,Laplacian matrix 有时被称为 admittance matrix, Kirchhoff matrix 或者 discrete Laplacian,它是 graph 的一种矩阵表示。Laplacian matrix 常常被用来寻找一些有用的图(graph)属性。结合基尔霍夫积分定理(Kirchhoff's theorem),它常常被用来计算一个给定图的生成树(spanning trees) 的数目。图的 sparsest cut 可以通过 Cheeger's inequality 的拉普拉斯矩阵的第二小的特征值来近似。
Laplacian matrix for simple graphs
给定的一个有 个节点的简单图(simple graph) , Laplacian matrix 被定义为:
这里 是一个 度矩阵(degree matrix), 是一个邻接矩阵(adjacency matrix). 由于 是一个简单图,所以, 中的元素仅仅可能是 和 ,且其对角元素全为 . 对于 有向图(directed graphs), 将会使用 indegree 和 outdegree . 这样, 中的每个元素是
表示节点 的度。
Symmetric normalized Laplacian
拉普拉斯矩阵的对称标准化:
Random walk normalized Laplacian
random-walk normalized Laplacian matrix :
更多参考 : Laplacian matrix