CNS图表复现---人人都能学会的单细胞聚类分群注释

这个数据集GSE129516,就是拿到了如下所示的数据文件:

图片

GEO下载的</figcaption>

我首先读取了一个文件,看了看,就是表达矩阵,所以直接CreateSeuratObject即可,都省去了3个文件的组合命令。

图片

表达矩阵例子</figcaption>

首先批量读取每个10x样品的表达矩阵

保证当前工作目录下面有后缀是matrices.csv.gz的文件,就是前面下载的6个文件:

rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)

fs=list.files(pattern = 'matrices.csv.gz')
fs

sceList <-  lapply(fs, function(x){
  a=read.csv( x )
  a[1:4,1:4]
  raw.data=a[,-1]
  rownames(raw.data)=a[,1]
  library(stringr)
  p=str_split(x,'_',simplify = T)[,2]
  sce <- CreateSeuratObject(counts = raw.data,project = p )
})` </pre>

每个matrices.csv.gz文件都读取后,提供CreateSeuratObject构建成为对象。如果是读取10x数据需要三个文件:barcodes.tsv, genes.tsv, matrix.mtx,那个更简单哦!

然后使用seurat最出名的多个10x合并算法

多个单细胞对象的整合,这里直接使用标准代码即可:

pro='integrated' 

for (i in 1:length(sceList)) {
  sceList[[i]] <- NormalizeData(sceList[[i]], verbose = FALSE)
  sceList[[i]] <- FindVariableFeatures(sceList[[i]], selection.method = "vst", 
                                             nfeatures = 2000, verbose = FALSE)
}
sceList
sce.anchors <- FindIntegrationAnchors(object.list = sceList, dims = 1:30)
sce.integrated <- IntegrateData(anchorset = sce.anchors, dims = 1:30)

因为是6个10X样品,所以这个步骤会略微有点耗费时间哦!

接着走标准的降维聚类分群

因为是构建好的对象,所以后续分析都是常规代码:

library(ggplot2)
library(cowplot)
# switch to integrated assay. The variable features of this assay are automatically
# set during IntegrateData
DefaultAssay(sce.integrated) <- "integrated"

# Run the standard workflow for visualization and clustering
sce.integrated <- ScaleData(sce.integrated, verbose = FALSE)
sce.integrated <- RunPCA(sce.integrated, npcs = 30, verbose = FALSE)
sce.integrated <- RunUMAP(sce.integrated, reduction = "pca", dims = 1:30)
p1 <- DimPlot(sce.integrated, reduction = "umap", group.by = "orig.ident")
p2 <- DimPlot(sce.integrated, reduction = "umap", group.by = "orig.ident", label = TRUE, 
              repel = TRUE) + NoLegend()
plot_grid(p1, p2)
p2
ggsave(filename = paste0(pro,'_umap.pdf') )

sce=sce.integrated
DimHeatmap(sce, dims = 1:12, cells = 100, balanced = TRUE)
ElbowPlot(sce)
sce <- FindNeighbors(sce, dims = 1:15)
sce <- FindClusters(sce, resolution = 0.2)
table(sce@meta.data$integrated_snn_res.0.2) 
sce <- FindClusters(sce, resolution = 0.8)
table(sce@meta.data$integrated_snn_res.0.8) 

DimPlot(sce, reduction = "umap")
ggsave(filename = paste0(pro,'_umap_seurat_res.0.8.pdf') )
DimPlot(sce, reduction = "umap",split.by = 'orig.ident')
ggsave(filename = paste0(pro,'_umap_seurat_res.0.8_split.pdf') )

save(sce,file = 'integrated_after_seurat.Rdata')` </pre>

最后对聚类的不同细胞亚群进行注释

前面呢是标准的聚类分群,每个细胞亚群仅仅是一个编号,实际上还需要给予它们一定的生物学意义,我们这里采用SingleR的标准代码:

rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)

load(file = 'integrated_after_seurat.Rdata')
DefaultAssay(sce) <- "RNA"
# for B cells :  cluster, 1,21
VlnPlot(object = sce, features ='Cd19',log =T )  
VlnPlot(object = sce, features ='Cd79a',log =T )  

library(SingleR)
sce_for_SingleR <- GetAssayData(sce, slot="data")
clusters=sce@meta.data$seurat_clusters
mouseImmu <- ImmGenData()
pred.mouseImmu <- SingleR(test = sce_for_SingleR, ref = mouseImmu, labels = mouseImmu$label.main,
                          method = "cluster", clusters = clusters, 
                          assay.type.test = "logcounts", assay.type.ref = "logcounts")

mouseRNA <- MouseRNAseqData()
pred.mouseRNA <- SingleR(test = sce_for_SingleR, ref = mouseRNA, labels = mouseRNA$label.fine ,
                         method = "cluster", clusters = clusters, 
                         assay.type.test = "logcounts", assay.type.ref = "logcounts")

cellType=data.frame(ClusterID=levels(sce@meta.data$seurat_clusters),
                    mouseImmu=pred.mouseImmu$labels,
                    mouseRNA=pred.mouseRNA$labels )
head(cellType)
sce@meta.data$singleR=cellType[match(clusters,cellType$ClusterID),'mouseRNA']

pro='first_anno'
DimPlot(sce,reduction = "umap",label=T, group.by = 'singleR')
ggplot2::ggsave(filename = paste0(pro,'_tSNE_singleR.pdf'))
DimPlot(sce,reduction = "umap",label=T,split.by ='orig.ident',group.by = 'singleR')
ggplot2::ggsave(filename = paste0(pro,'_tSNE_singleR_by_orig.ident.pdf'))

save(sce,file = 'last_sce.Rdata')` </pre>

出图如下:

图片

降维聚类分群注释</figcaption>

可以看到效果还是杠杆的,而且我全程都是标准代码,就是follow群主的教程即可,我的R也是半吊子水平,只有你敢动手,这个图你也可以自己亲手做出来哦。

原文链接
人人都能学会的单细胞聚类分群注释

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容