Flink 状态管理与检查点机制

一、状态分类

相对于其他流计算框架,Flink 一个比较重要的特性就是其支持有状态计算。即你可以将中间的计算结果进行保存,并提供给后续的计算使用:

[图片上传失败...(image-a7a290-1596010933687)]

<figcaption></figcaption>

具体而言,Flink 又将状态 (State) 分为 Keyed State 与 Operator State:

2.1 算子状态

算子状态 (Operator State):顾名思义,状态是和算子进行绑定的,一个算子的状态不能被其他算子所访问到。官方文档上对 Operator State 的解释是:each operator state is bound to one parallel operator instance,所以更为确切的说一个算子状态是与一个并发的算子实例所绑定的,即假设算子的并行度是 2,那么其应有两个对应的算子状态:

[图片上传失败...(image-88cb40-1596010933686)]

<figcaption></figcaption>

2.2 键控状态

键控状态 (Keyed State) :是一种特殊的算子状态,即状态是根据 key 值进行区分的,Flink 会为每类键值维护一个状态实例。如下图所示,每个颜色代表不同 key 值,对应四个不同的状态实例。需要注意的是键控状态只能在 KeyedStream 上进行使用,我们可以通过 stream.keyBy(...) 来得到 KeyedStream

[图片上传失败...(image-2dc7e-1596010933686)]

<figcaption></figcaption>

二、状态编程

2.1 键控状态

Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):

  • ValueState:存储单值类型的状态。可以使用 update(T) 进行更新,并通过 T value() 进行检索。
  • ListState:存储列表类型的状态。可以使用 add(T)addAll(List) 添加元素;并通过 get() 获得整个列表。
  • ReducingState:用于存储经过 ReduceFunction 计算后的结果,使用 add(T) 增加元素。
  • AggregatingState:用于存储经过 AggregatingState 计算后的结果,使用 add(IN) 添加元素。
  • FoldingState:已被标识为废弃,会在未来版本中移除,官方推荐使用 AggregatingState 代替。
  • MapState:维护 Map 类型的状态。

以上所有增删改查方法不必硬记,在使用时通过语法提示来调用即可。这里给出一个具体的使用示例:假设我们正在开发一个监控系统,当监控数据超过阈值一定次数后,需要发出报警信息。这里之所以要达到一定次数,是因为由于偶发原因,偶尔一次超过阈值并不能代表什么,故需要达到一定次数后才触发报警,这就需要使用到 Flink 的状态编程。相关代码如下:

public class ThresholdWarning extends 
    RichFlatMapFunction<Tuple2<String, Long>, Tuple2<String, List<Long>>> {

    // 通过ListState来存储非正常数据的状态
    private transient ListState<Long> abnormalData;
    // 需要监控的阈值
    private Long threshold;
    // 触发报警的次数
    private Integer numberOfTimes;

    ThresholdWarning(Long threshold, Integer numberOfTimes) {
        this.threshold = threshold;
        this.numberOfTimes = numberOfTimes;
    }

    @Override
    public void open(Configuration parameters) {
        // 通过状态名称(句柄)获取状态实例,如果不存在则会自动创建
        abnormalData = getRuntimeContext().getListState(
            new ListStateDescriptor<>("abnormalData", Long.class));
    }

    @Override
    public void flatMap(Tuple2<String, Long> value, Collector<Tuple2<String, List<Long>>> out)
        throws Exception {
        Long inputValue = value.f1;
        // 如果输入值超过阈值,则记录该次不正常的数据信息
        if (inputValue >= threshold) {
            abnormalData.add(inputValue);
        }
        ArrayList<Long> list = Lists.newArrayList(abnormalData.get().iterator());
        // 如果不正常的数据出现达到一定次数,则输出报警信息
        if (list.size() >= numberOfTimes) {
            out.collect(Tuple2.of(value.f0 + " 超过指定阈值 ", list));
            // 报警信息输出后,清空状态
            abnormalData.clear();
        }
    }
}
复制代码

调用自定义的状态监控,这里我们使用 a,b 来代表不同类型的监控数据,分别对其数据进行监控:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.fromElements(
    Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
    Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
    Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
    Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
tuple2DataStreamSource
    .keyBy(0)
    .flatMap(new ThresholdWarning(100L, 3))  // 超过100的阈值3次后就进行报警
    .printToErr();
env.execute("Managed Keyed State");
复制代码

输出如下结果如下:

[图片上传失败...(image-e0f6a8-1596010933685)]

<figcaption></figcaption>

2.2 状态有效期

以上任何类型的 keyed state 都支持配置有效期 (TTL) ,示例如下:

StateTtlConfig ttlConfig = StateTtlConfig
    // 设置有效期为 10 秒
    .newBuilder(Time.seconds(10))  
    // 设置有效期更新规则,这里设置为当创建和写入时,都重置其有效期到规定的10秒
    .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) 
    /*设置只要值过期就不可见,另外一个可选值是ReturnExpiredIfNotCleanedUp,
     代表即使值过期了,但如果还没有被物理删除,就是可见的*/
    .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
    .build();
ListStateDescriptor<Long> descriptor = new ListStateDescriptor<>("abnormalData", Long.class);
descriptor.enableTimeToLive(ttlConfig);
复制代码

2.3 算子状态

相比于键控状态,算子状态目前支持的存储类型只有以下三种:

  • ListState:存储列表类型的状态。
  • UnionListState:存储列表类型的状态,与 ListState 的区别在于:如果并行度发生变化,ListState 会将该算子的所有并发的状态实例进行汇总,然后均分给新的 Task;而 UnionListState 只是将所有并发的状态实例汇总起来,具体的划分行为则由用户进行定义。
  • BroadcastState:用于广播的算子状态。

这里我们继续沿用上面的例子,假设此时我们不需要区分监控数据的类型,只要有监控数据超过阈值并达到指定的次数后,就进行报警,代码如下:

public class ThresholdWarning extends RichFlatMapFunction<Tuple2<String, Long>, 
Tuple2<String, List<Tuple2<String, Long>>>> implements CheckpointedFunction {

    // 非正常数据
    private List<Tuple2<String, Long>> bufferedData;
    // checkPointedState
    private transient ListState<Tuple2<String, Long>> checkPointedState;
    // 需要监控的阈值
    private Long threshold;
    // 次数
    private Integer numberOfTimes;

    ThresholdWarning(Long threshold, Integer numberOfTimes) {
        this.threshold = threshold;
        this.numberOfTimes = numberOfTimes;
        this.bufferedData = new ArrayList<>();
    }

    @Override
    public void initializeState(FunctionInitializationContext context) throws Exception {
        // 注意这里获取的是OperatorStateStore
        checkPointedState = context.getOperatorStateStore().
            getListState(new ListStateDescriptor<>("abnormalData",
                TypeInformation.of(new TypeHint<Tuple2<String, Long>>() {
                })));
        // 如果发生重启,则需要从快照中将状态进行恢复
        if (context.isRestored()) {
            for (Tuple2<String, Long> element : checkPointedState.get()) {
                bufferedData.add(element);
            }
        }
    }

    @Override
    public void flatMap(Tuple2<String, Long> value, 
                        Collector<Tuple2<String, List<Tuple2<String, Long>>>> out) {
        Long inputValue = value.f1;
        // 超过阈值则进行记录
        if (inputValue >= threshold) {
            bufferedData.add(value);
        }
        // 超过指定次数则输出报警信息
        if (bufferedData.size() >= numberOfTimes) {
             // 顺便输出状态实例的hashcode
             out.collect(Tuple2.of(checkPointedState.hashCode() + "阈值警报!", bufferedData));
            bufferedData.clear();
        }
    }

    @Override
    public void snapshotState(FunctionSnapshotContext context) throws Exception {
        // 在进行快照时,将数据存储到checkPointedState
        checkPointedState.clear();
        for (Tuple2<String, Long> element : bufferedData) {
            checkPointedState.add(element);
        }
    }
}
复制代码

调用自定义算子状态,这里需要将并行度设置为 1:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 开启检查点机制
env.enableCheckpointing(1000);
// 设置并行度为1
DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.setParallelism(1).fromElements(
    Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
    Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
    Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
    Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
tuple2DataStreamSource
    .flatMap(new ThresholdWarning(100L, 3))
    .printToErr();
env.execute("Managed Keyed State");
}
复制代码

此时输出如下:

[图片上传失败...(image-d9aa0c-1596010933685)]

<figcaption></figcaption>

在上面的调用代码中,我们将程序的并行度设置为 1,可以看到三次输出中状态实例的 hashcode 全是一致的,证明它们都同一个状态实例。假设将并行度设置为 2,此时输出如下:

[图片上传失败...(image-757922-1596010933684)]

<figcaption></figcaption>

可以看到此时两次输出中状态实例的 hashcode 是不一致的,代表它们不是同一个状态实例,这也就是上文提到的,一个算子状态是与一个并发的算子实例所绑定的。同时这里只输出两次,是因为在并发处理的情况下,线程 1 可能拿到 5 个非正常值,线程 2 可能拿到 4 个非正常值,因为要大于 3 次才能输出,所以在这种情况下就会出现只输出两条记录的情况,所以需要将程序的并行度设置为 1。

三、检查点机制

3.1 CheckPoints

为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints) 。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。

[图片上传失败...(image-8b1582-1596010933684)]

<figcaption></figcaption>

3.2 开启检查点

默认情况下,检查点机制是关闭的,需要在程序中进行开启:

// 开启检查点机制,并指定状态检查点之间的时间间隔
env.enableCheckpointing(1000); 

// 其他可选配置如下:
// 设置语义
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 设置两个检查点之间的最小时间间隔
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 设置执行Checkpoint操作时的超时时间
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 设置最大并发执行的检查点的数量
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 将检查点持久化到外部存储
env.getCheckpointConfig().enableExternalizedCheckpoints(
    ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// 如果有更近的保存点时,是否将作业回退到该检查点
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);
复制代码

3.3 保存点机制

保存点机制 (Savepoints) 是检查点机制的一种特殊的实现,它允许你通过手工的方式来触发 Checkpoint,并将结果持久化存储到指定路径中,主要用于避免 Flink 集群在重启或升级时导致状态丢失。示例如下:

# 触发指定id的作业的Savepoint,并将结果存储到指定目录下
bin/flink savepoint :jobId [:targetDirectory]
复制代码

更多命令和配置可以参考官方文档:savepoints

四、状态后端

4.1 状态管理器分类

默认情况下,所有的状态都存储在 JVM 的堆内存中,在状态数据过多的情况下,这种方式很有可能导致内存溢出,因此 Flink 该提供了其它方式来存储状态数据,这些存储方式统一称为状态后端 (或状态管理器):

[图片上传失败...(image-84289c-1596010933684)]

<figcaption></figcaption>

主要有以下三种:

1. MemoryStateBackend

默认的方式,即基于 JVM 的堆内存进行存储,主要适用于本地开发和调试。

2. FsStateBackend

基于文件系统进行存储,可以是本地文件系统,也可以是 HDFS 等分布式文件系统。 需要注意而是虽然选择使用了 FsStateBackend ,但正在进行的数据仍然是存储在 TaskManager 的内存中的,只有在 checkpoint 时,才会将状态快照写入到指定文件系统上。

3. RocksDBStateBackend

RocksDBStateBackend 是 Flink 内置的第三方状态管理器,采用嵌入式的 key-value 型数据库 RocksDB 来存储正在进行的数据。等到 checkpoint 时,再将其中的数据持久化到指定的文件系统中,所以采用 RocksDBStateBackend 时也需要配置持久化存储的文件系统。之所以这样做是因为 RocksDB 作为嵌入式数据库安全性比较低,但比起全文件系统的方式,其读取速率更快;比起全内存的方式,其存储空间更大,因此它是一种比较均衡的方案。

4.2 配置方式

Flink 支持使用两种方式来配置后端管理器:

第一种方式:基于代码方式进行配置,只对当前作业生效:

// 配置 FsStateBackend
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));
// 配置 RocksDBStateBackend
env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:40010/flink/checkpoints"));
复制代码

配置 RocksDBStateBackend 时,需要额外导入下面的依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-statebackend-rocksdb_2.11</artifactId>
    <version>1.9.0</version>
</dependency>
复制代码

第二种方式:基于 flink-conf.yaml 配置文件的方式进行配置,对所有部署在该集群上的作业都生效:

state.backend: filesystem
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints
复制代码

注:本篇文章所有示例代码下载地址:flink-state-management

参考资料

作者:heibaiying
链接:https://juejin.im/post/5dd2661cf265da0bf175d5bb
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351