http与https的区别,你真的知道吗?

一 我们先来了解下,HTTP存在的问题,HTTP 主要有这些不足:

1、无状态,每个请求结束后都会被关闭,每次的请求都是独立的;服务器中没有保存客户端的状态,客户端必须每次带上自己的状态去请求服务器

2、通信使用明文(不加密),内容可能会被窃听

3、不验证通信方的身份,因此有可能遭遇伪装

4、无法证明报文的完整性,所以有可能已遭篡改

二 HTTPS在HTTP基础上增加了哪些内容呢?

HTTPS = HTTP+ 加密 (ssl加密通信线路)+ 认证(ca证书验证) + 完整性保护(混合加密)

HTTPS 并非是应用层的一种新协议。只是 HTTP 通信接口部分用SSL(Secure Socket Layer)和 TLS(Transport Layer Security)协议代替而已。通常,HTTP 直接和 TCP 通信。当使用 SSL 时,则演变成先和 SSL 通信,再由 SSL 和 TCP 通信了。简言之,所谓 HTTPS,其实就是身披SSL 协议这层外壳的 HTTP。

image.png

三 我们来了解一下加密的方式

1 对称加密(共享密钥方式):

加密和解密同用一个密钥的方式;以对称密钥方式加密时必须将密钥也发给对方。可究竟怎样才能安全地转交?
在互联网上转发密钥时,如果通信被监听那么密钥就可会落入攻击者之手,同时也就失去了加密的意义。另外还得设法安全地保管接收到的密钥。

2 非对称加密(公开密钥加密方式):

公开密钥加密使用一对非对称的密钥。一把叫做私有密钥(private key),另一把叫做公开密钥(public key);
使用非对称加密加式,发送密文的一方使用对方的公开密钥进行加密处理,对方收到被加密的信息后,再使用自己的私有密钥进行解密。

例如客户需发送银行卡密码,最开始由银行服务端发送自己的公开密钥给客户端,客户端通过该公开密钥加密,再把密文发送给服务端,服务端用自己的私钥解密

四 HTTPS的加密方式--混合加密

HTTPS 采用对称加密和非对称加密两者并用的混合加密机制。若密钥能够实现安全交换,那么有可能会考虑仅使用 非对称密钥加密来通信。但是非对称密钥加密与对称加密相比,其处理速度要慢。所以应充分利用两者各自的优势,将多种方法组合起来用于通信。在交换密钥环节使用公开密钥加密方式,之后的建立通信交换报文阶段则使用共享密钥加密方式

存在的问题
非对称加密方式还是存在一些问题的。那就是无法证明公开密钥本身就是货真价实的公开密钥。为了解决上述问题,可以使用由数字证书认证机构(CA,CertificateAuthority)和其相关机关颁发的公开密钥证书。

CA验证过程:
服务器的运营人员向数字证书认证机构提出公开密钥的申请。数字证书认证机构在判明提出申请者的身份之后,会对已申请的公开密钥做数字签名,然后分配这个已签名的公开密钥,并将该公开密钥放入公钥证书后绑定在一起。服务器会将这份由数字证书认证机构颁发的公钥证书 发送给客户端,以进行公开密钥加密方式通信。公钥证书也可叫做数字证书或直接称为证书。
接到证书的客户端可使用数字证书认证机构的公开密钥(事先已植入到浏览器里),对那张证书上的数字签名进行验证,一旦验证通过,客户端便可明确两件事:一,认证服务器的公开密钥的是真实有效的数字证书认证机构。二,服务器的公开密钥是值得信赖的。此处认证机关的公开密钥必须安全地转交给客户端

五 总结:

HTTPS解决的问题:
1 信任主机的问题
采用HTTPS的server 必须从CA (数字证书认证机构处于客户端与服务器双方都可信赖的第三方机构的立场上)申请一个用于证明服务器用途类型的证书,该证书里包含CA的签名和服务器的公开密钥,服务器会将公钥证书发送给客户端,以进行非对称加密方式通信。客户端可使用数字证书认证机构的公开密钥,对那张证书上的数字签名进行验证,客户端才能知道访问的服务器是安全的。目前基本所有的在线购物和网银等网站或系统,关键部分应用都是HTTPS的,客户通过信任该证书,从而信任了该主机,这样才能保证安全。

2 通讯过程中的数据的泄密和被窜改
使用HTTPS 协议,HTTPS 采用非对称加密和对称加密两者并用的混合加密机制。若密钥能够实现安全交换,那么有可能会考虑仅使用非对称加密来通信。但是非对称加密与对称加密相比,其处理速度要慢。所以应充分利用两者各自的优势,将多种方法组合起来用于通信。在交换密钥环节使用非对称加密方式,之后的建立通信交换报文阶段则使用对称加密方式

《http图解》

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,670评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,928评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,926评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,238评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,112评论 4 356
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,138评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,545评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,232评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,496评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,596评论 2 310
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,369评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,226评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,600评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,906评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,185评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,516评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,721评论 2 335