题目:
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
大致意思如下:
有(1,a1) (2,a2)....(n,an)几个点,现在向x轴做垂线,其中两条垂线与所夹的一段x轴形成一个凹槽,可作为容器盛水,问盛水的最大的体积为多少?如下图:
解题:
我首先的想法是两个for循环嵌套,嗯,比较蠢,代码如下:
class Solution {public: int maxArea(vector& height) {
int contain = 0;
int temp = 0;
for(int i = 0; i < height.size() - 1; ++i)
{
for(int j = i + 1; j < height.size(); ++j)
{
temp = (height[i] <= height[j]) ? height[i] : height[j];
temp = temp * (j - i);
contain = (temp > contain) ? temp : contain;
}
}
return contain;
}
};
submission后奇迹出现了,49个testcase通过48个,然而,最后一个爆了,time limit exceed,我认为应该是太蠢,效率太低,然后爆掉了,毕竟两个for嵌套~
于是,在我看了其他大神的攻略后,发现自己果然蠢,这个题可以这么想:
1. 每次计算体积时一定以最短长度作为高
2. 如果左边低于右面的话,右边的横坐标越大越好
本着以上两点,我们可以用两个计数器,i初始为最左边,j初始为最右边,if height[i] < height[j], 那么就非常开心了,因为在这种情况下,此时一定体积最大(
因为高一定,此时最长),那么接下来我们就可以进行i右移一位了,反过来情况下,j就要左移一位了,代码如下:
class Solution {public: int maxArea(vector& height) {
int contain = 0;
int temp = 0;
int i = 0;
int j = height.size() -1 ;
if (height.size() == 2)
contain = (height[0] < height[1]) ? height[0] : height[1];
else {
while(i < j)
{
if (height[i] <= height[j])
{
temp = height[i] * (j - i);
contain = (temp > contain) ? temp : contain;
i++;
}
else
{
temp = height[j] * (j - i);
contain = (temp > contain) ? temp : contain;
j--;
}
}
}
return contain;
}
};
嗯~通过了,虽然only beats 29.18% cpp 且代码有点冗余,但这个思路先记下咯~