TensorFlow shape相关操作

参考文献:
  1. 基本形状操作函数:https://blog.csdn.net/xierhacker/article/details/53462072
基本形状操作函数
  1. tf.shape(input, name=None, out_type=tf.int32)

    作用: 返回一个1维tensor表示input的形状

    参数: input: 输入的tensor

    name: 可选,这个操作的名字

    out_type: (可选)输出的类型(int32 or int64), 默认tf.int32

    x_shape = tf.shape(x)
    y_shape = tf.shape(y)
    z_shape = tf.shape(z)
    sess = tf.Session()
    print(sess.run(x_shape))
    print(sess.run(y_shape))
    
    操作该函数时,不能使用tf.run(),因为返回的是tuple,否则返回的是string
    
  2. tf.size(input, name=None, out_type=tf.int32)

    作用:返回一个tensor的size,也即是input的元素数量

    参数: input: 输入的tensor

    name: 操作的名字

    out_type: 输出的类型 (int32 or int64),默认int32

    # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
    size(t) ==> 12
    
  3. tf.rank(input, name=None)

    作用:返回一个tensor的rank,也可以理解为维度数

    参数: input: 输入的tensor

    name: 操作名字

    # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
    # shape of tensor 't' is [2, 2, 3]
    rank(t) ==> 3
    
  4. tf.reshape(tensor, shape, name=None)

    作用:改变一个tensor的形状,按照指定的shape返回一个tensor。

    参数: tensor: tensor,待被改变形状的tensor

    shape: tensor,必须是 int32, int64.决定了输出tensor的形状

    # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
    # tensor 't' has shape [9]
    reshape(t, [3, 3]) ==> [[1, 2, 3],
                            [4, 5, 6],
                            [7, 8, 9]]
    
操作同时降维
  1. tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    作用:计算tensor的某个维度上元素的总和。

    在给定的reduction_indices 上面缩减input_tensor ,除非keep_dims 设为True,不然相应轴上面的维度要减少1. 如果reduction_indices 没有输入(默认为None),那么所有的维度都会缩减,返回一个只带一个元素的tensor

    # 'x' is [[1, 1, 1]
    #         [1, 1, 1]]
    tf.reduce_sum(x) ==> 6
    tf.reduce_sum(x, 0) ==> [2, 2, 2]
    tf.reduce_sum(x, 1) ==> [3, 3]
    tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
    tf.reduce_sum(x, [0, 1]) ==> 6
    
  2. tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    计算tensor上面某个维度的平均值。其他参数同1

    # 'x' is [[1., 1.]
    #         [2., 2.]]
    tf.reduce_mean(x) ==> 1.5
    tf.reduce_mean(x, 0) ==> [1.5, 1.5]
    tf.reduce_mean(x, 1) ==> [1.,  2.]
    
  3. over

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容

  • TF API数学计算tf...... :math(1)刚开始先给一个运行实例。tf是基于图(Graph)的计算系统...
    MachineLP阅读 3,468评论 0 1
  • 1. tf函数 tensorflow 封装的工具类函数 | 操作组 | 操作 ||:-------------| ...
    南墙已破阅读 5,127评论 0 5
  • tensorflow开发API 架构 Modules app module: Generic entry poin...
    sennchi阅读 1,353评论 0 2
  • 父类引用变量可以指向子类对象。 多态的前提是必须有子父类关系或者类实现接口关系,否则无法完成多态。 在使用多态后的...
    Mr_ZZ先生阅读 224评论 0 0
  • 背景知识: 动态规划 @算法导论 p243 题目 某旅行者外出, 需要将5件物品装入包中. 包的总容量是12kg,...
    陈码工阅读 1,929评论 0 1