[pCTR]广告点击率预测 [离线部分]


腾讯在Spark上的应用与实践优化图文百度文库
http://wenku.baidu.com/link?url=8J5hg6ASRnyNfJSsALxKKt1QaKO7oHVwRO8sCGDbyYdPHGDl-oj4xydKsy83F_uTtNIeR4WJPcMgCz3QT9Ky1T-Noej0_mk2-jAtbA0pDlS

Case 1:预测用户的广告点击概率.png
Paste_Image.png

搜索广告那点事儿:为什么要预估点击率 - 百科教程网_经验分享平台[上学吧经验教程频道]
http://www.shangxueba.com/jingyan/750069.html
背景
想到这个题目是因为 @lijiefei 某天跟我说他有师弟面淘宝时被问到 "点击率预估的目标到底是什么", 笨狗当时胡乱扯了一通, 发现要把这个似乎已经是真理的事情掰清楚还没那么容易, 于是有此念想写文一篇详细分析下原因

我和 jiefei 认识是在百度做搜索广告的时候, 那就从搜索广告开始说为什么要预估点击率, 以及预估点击率的目标. 先申明一些名词和假定: 1) 每个广告 (Ad) 有一个出价 (Bid), 并有其在某情形下实际的点击率 (Click-Through-Rate, CTR) 2) 广告按点击收费 (Charge per Click, CPC), 下面我们会分别讨论一价计费 (First-Price, FP, 即广告出价多少则一次点击计费多少) 和二价计费 (Second-Price, SP, 即广告按下一位出价来支付点击价格, 更普遍的是 GSP) 3) 千次展现收费 (Cost Per Mille, CPM, 或 RPM, R for Revenue), 即对点击付费广告其展示一千次情况下的收入 (一价计费下等价于 1000CTRBid), 或是展示广告的千次展现固定价格 4) 预估点击率 (predict CTR, pCTR) 是指对某个广告将要在某个情形下展现前, 系统预估其可能的点击概率

目标分类
搜索广告跟自然结果一个很大的区别就是自然结果只要有一点相关就应该放到所有结果里去, 至于先后位置那个再说, 而广告, 是有个相关性的准入门槛的, 不相关的广告出价再高, 丢出来还是会被骂死. 那怎么判断相关? 用户会用鼠标点击来对结果投票, 相关的广告会被点击, 不相关的广告不会被点击, 那很自然就能得出 "点击率和相关性正相关" 这个结论 (至于描述里写 "二十五岁以下免进" 但实际是钢材广告的这种诱骗行为后面再说怎么处理). 那对于这种相关性准入的场景, 预估点击率就是预估广告是否相关, 最朴素情况下这是个二分类问题, 那不管预估成怎样, 只要有一种分割方法能分开是否相关就行了. 此时预估点击率的目标是能对广告按相关与否分类 (或说按相关性排序并给出一个截断值). 评估分类问题好坏, 一般都是看准确和召回两个指标, 用人工打分的记录来做回归验证就行

总结

  1. 点击率预估是为产品的最终目标服务的, 最终目标可以是广告的收入, 广告的相关性, 推荐的接受率等, 看具体场景 2) 点击率预估的直接目标根据需求场景不同, 分别是保证预估值和实际值分类正确, 预估序和实际序正确, 预估值和实际值是等比缩放的, 预估值等于实际值 3) 要保证离线评估点击率预估的效果, 分别可用分类的准确率和召回率, 排序的 AUC, 带权排序的 wAUC, 相似度 MAE/MSE 来评估
    (原文:http://www.yewen.us/blog/2013/05/why-predict-ctr/

广告点击率预测 [离线部分] - quweiprotoss的日志 - 网易博客
http://quweiprotoss.blog.163.com/blog/static/4088288320144810567471?utm_source=tuicool&utm_medium=referral
广告点击率预测(pCTR Predict Click-Through Rate)是广告算法中最核心的技术了。pCTR要解决的问题是预测特定用户在特定广告位对特定广告当特定环境下的点击概率。为什么pCTR如此重要,因为广告排序的核心是eCPM = pCTR * CPC,CPC是广告主对点击的出价,是个已知量,所以只有一个pCTR变量。当然在实际中不可能是如此简单的排序公式,比如还有质量得分(Quality Score),比如Google的质量得分因素。
pCTR一般是从离线数据中学习得到的,离线数据是保存到类似Hive的分布式数据库中,通过机器学习的算法将Hive中的数据进行分析,得到一个pCTR模型,这个模型就可以预测pCTR了,大致流程就是这样。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,976评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,249评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,449评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,433评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,460评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,132评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,721评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,641评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,180评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,267评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,408评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,076评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,767评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,255评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,386评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,764评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,413评论 2 358

推荐阅读更多精彩内容