布局
通过前面一节的介绍,我们已经对 circlize 的构图方式有了一个大致的了解,下面我们将详细介绍一下 circlize 的布局结构
1. 坐标转换
我们最后看到的圆形布局结构图,其实是经过了三次的坐标转换。第一次是将数据映射到数据坐标系统中,即我们常用的笛卡尔坐标系;第二次进行极坐标变换,变成圆形布局;最后进行画布坐标变换,将图形输出到图形设备中。
图形总是绘制在半径为 1 的单位元内部,而且是从外向内依次进行绘制
2. 绘制规则
绘制圆形布局图的顺序依次是:初始化布局 -> 创建图形轨迹 -> 添加图形 -> 创建图形轨迹 -> 添加图形 ... -> clear。
- 初始化布局
布局的初始化使用的是 circos.initialize() 函数,至少需要传递一个分类变量,而每个类别的 x 值范围可以设置为一个向量或范围值
circos.initialize(sectors, xlim)
- 创建并添加图形
新创建的图形会放置在前面一个图形的内侧,只有创建了图形轨迹之后,才能往里面添加图形。添加图形的方式有三种
- 使用简单图形函数如
circos.points()、circos.lines()等,逐单元格添加,需要使用for循环并指定sector.index和track.index来定位单元格,例如
circos.track(ylim)
for(sector.index in all.sector.index) {
circos.points(x1, y1, sector.index)
circos.lines(x2, y2, sector.index)
}
- 批次添加模式,使用
circos.trackPoints()和circos.trackLines()等函数,同时要指定分类变量以及x、y的值,会自动为相应的单元格绘制图形,例如
circos.track(ylim)
circos.trackPoints(sectors, x, y)
circos.trackLines(sectors, x, y)
- 使用
panel.fun参数添加自定义图形,推荐使用这种方式。这种方式会逐次添加单元格,每添加一个单元格会立即执行panel.fun函数,所以该函数总是指向当前创建的单元格,这样我们使用简单图形函数时就不需要指定单元格位置了
circos.track(sectors, all_x, all_y, ylim,
panel.fun = function(x, y) {
circos.points(x, y)
circos.lines(x, y)
})
3. 扇形和轨迹
圆形布局的组成结构可以看下图

图中,蓝色部分的扇形是一个 sector 且索引为 a,红色圆圈是一个轨迹 track,轨迹的索引为 2
通过这两个索引值,就可以定位圆形布局中每一个单元格,如 a:1 可以用 sector.index = "a" 和 track.index = 1 来获取
sector 是在调用 circos.initialize() 函数时创建的,必须使用分类变量。每个扇形的大小是根据数据的范围来自动设置的
可以设置参数 x 或 xlim 的值来控制每个扇形的数据范围,x 接受一个长度与类别相同的数字向量,xlim 接受一个两列的矩阵为每个扇形设置不同的数据范围,或一个长度为 2 的向量,为所有的扇形设置相同的数据范围
circos.initialize(sectors, x = x)
circos.initialize(sectors, xlim = xlim)
如果没有设置 sectors 参数,将会把 xlim 的行名作为 sectors
circos.initialize(xlim = xlim)
如果想要设置 sectors 的排列顺序,需要使用 factor 并设置对应的 levels
circos.initialize(
factor(sectors, levels = sectors),
xlim = c(0, 1)
)
同一扇形区域内的单元格拥有相同的 x 轴范围,而同一条轨迹中的图形共享相同的 y 范围。
circos.track() 可以接受 y 和 ylim 参数,ylim 为长度为 2 的向量。当然也可以指定 x 的值,但是该值只会传递到 panel.fun 的函数中。
circos.track(sectors, y = y)
circos.track(sectors, ylim = c(0, 1))
circos.track(sectors, x = x, y = y)
由于在初始化布局时就已经确定了每个扇形区域,所以,如果不指定 sectors 参数,默认会应用到所有的扇形中。而 sectors 参数可以是所有扇形的子集,意味着只对指定的这些扇形做相应的调整
circos.track(sub_sectors, y = y)
circos.track(ylim = c(0, 1))
circos.track(ylim = ranges(y))
每个单元格之间是相互独立的,拥有自己的坐标范围


4. 图形参数
圆形布局的一些基础参数,可以使用 circos.par() 来设置。

其中,对扇形进行定位的参数只能在初始化之前(circos.initialize)进行设置:
start.degree
gap.degree/gap.after
canvas.xlim
canvas.ylim
circle.margin
clock.wise
xaxis.clock.wise
可以使用函数参数的方式设置,如
circos.par("start.degree" = 30)
或者使用 $ 的形式
circos.par$start.degree = 30
重置参数的默认值
circos.par(RESET = TRUE)
# circos.clear()
5. panel.fun
panel.fun 参数是 circos.track() 函数中非常有用的参数,可以在创建完单元格之后立即绘制图形。
该参数接受的自定义函数需要两个参数 x、y 来定义单元格的数据点,会自动从 circos.track() 函数中的 x、y 中提取相应扇形区域的数据。
例如
sectors = c("a", "a", "a", "b", "b")
x = 1:5
y = 5:1
circos.track(sectors, x = x, y = y,
panel.fun = function(x, y) {
circos.points(x, y)
})
如果 circos.track() 函数中的 x、y 为空,则相应的 panel.fun 函数中的 x、y 也会为空,但是可以获取当前单元格索引的方式来获取全局数据变量的子集
sectors = c("a", "a", "a", "b", "b")
x2 = 1:5
y2 = 5:1
circos.track(ylim = range(y),
panel.fun = function(x, y) {
l = sectors == CELL_META$sector.index
circos.points(x2[l], y2[l])
})
通过获取当前单元格的索引,可以获取对应扇形区域的数据子集,从而到达不使用 x、y 参数的目的。
当前单元格的信息,可以使用 get.cell.meta.data() 函数来获取
可以使用 get.cell.meta.data() 获取的信息有:
-
sector.index: 扇形的名称 -
sector.numeric.index: 扇形的数值索引 -
track.index: 轨迹的数值索引 -
xlim:x轴的最大、最小值 -
ylim:y轴的最大、最小值 -
xcenter:xlim的均值 -
ycenter:ylim的均值 -
xrange:x数据范围 (xlim[2] - xlim[1]) -
yrange:y数据范围 (ylim[2] - ylim[1]) -
cell.xlim: 单元格x轴范围(包括空白填充) -
cell.ylim: 单元格y轴范围 -
xplot: 绘图区域的右边框与左边框的角度差,不受圆形布局的方向影响,xplot[1]总是大于xplot[2] -
yplot: 绘图区域的下方与上方的半径长度差别 -
cell.width: 单元格宽度,计算公式为xplot[1] - xplot[2]) %% 360 -
cell.height: 单元格高度,计算公式为yplot[2] - yplot[1] -
cell.start.degree: 等同于xplot[1] -
cell.end.degree: 等同于xplot[2] -
cell.bottom.radius: 等同于yplot[1] -
cell.top.radius: 等同于yplot[2] -
track.margin: 单元格边距 -
cell.padding: 单元格空白填充
例如,我们可以在每个单元格中间添加标签
circos.track(ylim = ylim, panel.fun = function(x, y) {
sector.index = get.cell.meta.data("sector.index")
xcenter = get.cell.meta.data("xcenter")
ycenter = get.cell.meta.data("ycenter")
circos.text(xcenter, ycenter, sector.index)
})
如果想要在 panel.fun 的函数外部使用 get.cell.meta.data(),需要传递对应的单元格索引 sector.index 和 track.index
CELL_META 变量和 get.cell.meta.data() 一样,但是更加简洁,例如,上面的代码可以改写为
circos.track(ylim = ylim, panel.fun = function(x, y) {
circos.text(CELL_META$xcenter, CELL_META$ycenter,
CELL_META$sector.index)
})
需要注意的是,CELL_META 只表示当前单元格的信息,所以无法在函数之外使用
如果想在 panel.fun 函数外部为某一单元格添加一些图形,可以使用 set.current.cell() 来设置当前单元格的位置,而免去重复的设置 sector.index = ..., track.index = ...
set.current.cell(sector.index, track.index)
circos.text(get.cell.meta.data("xcenter"),
get.cell.meta.data("ycenter"),
get.cell.meta.data("sector.index"))
更简便的方法是
circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index)
6. 实用函数
6.1 坐标转换
circlize 数据转换的核心函数是 circlize(),用于将单元格的数据坐标转换为极坐标,其逆转换函数 reverse.circlize() 用于将极坐标转换为数据坐标
例如,对于如下圆形布局
sectors = c("a", "b")
circos.initialize(sectors, xlim = c(0, 1))
circos.track(ylim = c(0, 1))
将 a1 上的点 c(0.5, 0.5) 转换为极坐标
> circlize(0.5, 0.5, sector.index = "a", track.index = 1)
theta rou
[1,] 270.5 0.94
将极坐标 c(90, 0.9) 转换为数据坐标
> reverse.circlize(90, 0.9, sector.index = "a", track.index = 1)
x y
[1,] 1.519774 -0.06
将 b1 的c(90, 0.9) 转换为数据坐标
> reverse.circlize(90, 0.9, sector.index = "b", track.index = 1)
x y
[1,] 0.5028249 -0.06
可以看到不同单元格的同一个坐标点,其数据坐标是不一样的
我们可以使用 circlize:::polar2Cartesian() (该函数接口未暴露,需要这种引用方式)将极坐标转换为画布上的坐标,这样就可以为添加一些特殊的图形。
6.2 绝对单位
在使用包的时候,我们经常需要对宽度或高度进行一些修改,circlize 包提供了一些绝对单位的转换函数,例如
mm_h(), cm_h(), inches_h()/inch_h() 用于将绝对单位:毫米、厘米、英寸转换为画布坐标,如果要转换字符串宽度和高度,可以使用 strheight() 或 strwidth() 函数
mm_h(2) # 2mm
cm_h(1) # 1cm
还有一些函数用于将绝对单位转换为数据坐标:
mm_x/y()、cm_x/y()、inches_x/y()/inch_x/y()
mm_x(2)
mm_x(1, sector.index, track.index)
mm_y(2)
mm_y(1, sector.index, track.index)
例如
sectors = letters[1:10]
circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0))
circos.initialize(sectors, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5)))
# 轨迹高度为 5mm
circos.track(
ylim = c(0, 1), track.height = mm_h(5),
panel.fun = function(x, y) {
circos.lines(c(0, 0 + mm_x(5)), c(0.5, 0.5), col = "blue")
}
)
# 轨迹高度为 1cm
circos.track(
ylim = c(0, 1), track.height = cm_h(1),
track.margin = c(0, mm_h(2)),
panel.fun = function(x, y) {
xcenter = get.cell.meta.data("xcenter")
# 绘制长度为 1cm 的线
circos.lines(c(xcenter, xcenter), c(0, cm_y(1)), col = "red")
}
)
# 轨迹高度为 1 英寸
circos.track(
ylim = c(0, 1), track.height = inch_h(1),
track.margin = c(0, mm_h(5)),
panel.fun = function(x, y) {
line_length_on_x = cm_x(1 * sqrt(2) / 2)
line_length_on_y = cm_y(1 * sqrt(2) / 2)
circos.lines(c(0, line_length_on_x), c(0, line_length_on_y), col = "orange")
}
)

7. 设置间距
set_track_gap() 函数可以设置轨迹之间的间距
circos.initialize(letters[1:10], xlim = c(0, 1))
circos.track(ylim = c(0, 1), bg.border = "red")
# 设置第二个轨迹与第一个轨迹之间的间距为 2mm
set_track_gap(mm_h(2))
circos.track(ylim = c(0, 1), bg.border = "blue")
# 设置第三个轨迹与第二个轨迹之间的间距为 0.5cm
set_track_gap(cm_h(0.5))
circos.track(ylim = c(0, 1), bg.border = "orange")
