Task3 EM算法

简介

EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,其最主要的思想有两步:

  • E:求期望,
  • M: 求极大
    EM算法采用的是启发式的迭代方法,就是当我们无法直接求出模型的参数分布的时候,我们先猜想隐含的数据,根据猜测的隐含数据和观察数据,求对数似然的最大值。然后根据当前模型的参数,继续猜测隐含数据,然后再求极大化似然函数,以此类推迭代下去,直到模型参数的分布基本不变化,那么当前模型的参数,认为是得到极大似然的最好模型参数。

其实K-Means就是这种思想。求质心的过程其实就是E,计算每个样本最近的质心,就是M步。

数学推导


输入:观测数据X,模型参数为θ。极大化模型分布的对数似然为:
\theta = arg \max \limits_{\theta}\sum\limits_{i=1}^m logP(x^{(i)};\theta)
对于得到的观察数据有未观察到的隐含数据Z,极大化模型分布的对数似然可以变成:
\theta = arg \max \limits_{\theta}\sum\limits_{i=1}^m logP(x^{(i)};\theta) = arg \max \limits_{\theta}\sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}P(x^{(i)}, z^{(i)};\theta)

通过Jensen不等式:
log\sum\limits_j\lambda_jy_j \geq \sum\limits_j\lambda_jlogy_j\;\;, \lambda_j \geq 0, \sum\limits_j\lambda_j =1

极大化模型分布的对数似然可以变成:
\begin{align} \sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}P(x^{(i)}, z^{(i)};\theta) & = \sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}Q_i(z^{(i)})\frac{P(x^{(i)}, z^{(i)};\theta)}{Q_i(z^{(i)})} \\ & \geq \sum\limits_{i=1}^m \sum\limits_{z^{(i)}}Q_i(z^{(i)})log\frac{P(x^{(i)}, z^{(i)};\theta)}{Q_i(z^{(i)})} \end{align}
其中Q_i(z^{(i)})是一个未知的新的分布。

或者说由于对数函数是凹函数,所以有:
f(E(x))≥E(f(x))如果f(x)是凹函数
    此时如果要满足Jensen不等式的等号,则有:
P(x(i),z(i);θ)Qi(z(i))=c,c为常数
    由于Qi(z(i))是一个分布,所以满足:
∑zQi(z(i))=1
    从上面两式,我们可以得到:
Qi(z(i))=P(x(i),z(i);θ)∑zP(x(i),z(i);θ)=P(x(i),z(i);θ)P(x(i);θ)=P(z(i)|x(i);θ))
    如果Qi(z(i))=P(z(i)|x(i);θ)), 则第(2)式是我们的包含隐藏数据的对数似然的一个下界。如果我们能极大化这个下界,则也在尝试极大化我们的对数似然。即我们需要最大化下式:
argmaxθ∑i=1m∑z(i)Qi(z(i))logP(x(i),z(i);θ)Qi(z(i))
    去掉上式中为常数的部分,则我们需要极大化的对数似然下界为:
argmaxθ∑i=1m∑z(i)Qi(z(i))logP(x(i),z(i);θ)
    上式也就是我们的EM算法的M步,那E步呢?注意到上式中Qi(z(i))是一个分布,因此∑z(i)Qi(z(i))logP(x(i),z(i);θ)可以理解为logP(x(i),z(i);θ)基于条件概率分布Qi(z(i))的期望。

至此,我们理解了EM算法中E步和M步的具体数学含义。

EM算法流程

输入: 观察数据x=\left(x^{(1)}, x^{(2)}, \ldots x^{(m)}\right) ,联合分布p(x, z | \theta) ,条件分布p(z | x, \theta) ,极大迭代次数J

  1. 随机初始化模型参数\thetaθ的初值\theta^{0}

  2. from j from 1 to J:
    - E步:计算联合分布的条件概率期望:
    \left.Q_{i}\left(z{(i)}\right):=P\left(z{(i)} | x^{(i)}, \quad \theta\right)\right)

     - M步:极大化L(\theta)L(θ),得到\thetaθ:
    

\theta:=\arg \max {\theta} \sum{i=1}^{m} \sum_{z^{(i)}} Q_{i}\left(z^{(i)}\right) \log P\left(x^{(i)}, z^{(i)} | \theta\right)
- E,M步骤直到\thetaθ收敛。
- 输出:模型参数\thetaθ

EM算法收敛性的思考

  • 具体的推导参考这个吧 https://www.cnblogs.com/pinard/p/6912636.html
  • EM 算法可以保证收敛到一个稳定点,但是却不能保证收敛到全局的极大值点,因此它是局部最优的算法,如果我们的优化目标是凸的,则EM算法可以保证收敛到全局极大值,这点和梯度下降法这样的迭代算法相同。

EM算法应用

如果我们从算法思想的角度来思考EM算法,我们可以发现我们的算法里已知的是观察数据,未知的是隐含数据和模型参数,在E步,我们所做的事情是固定模型参数的值,优化隐含数据的分布,而在M步,我们所做的事情是固定隐含数据分布,优化模型参数的值。EM的应用包括:
- 支持向量机的SMO算法
- 混合高斯模型
- K-means
- 隐马尔可夫模型

参考资料:


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容