使用Cicero包进行单细胞ATAC-seq分析(一):Cicero introduction and installation

image
image

往期精选

使用Signac包进行单细胞ATAC-seq数据分析(一):Analyzing PBMC scATAC-seq
使用Signac包进行单细胞ATAC-seq数据分析(二):Motif analysis with Signac
使用Signac包进行单细胞ATAC-seq数据分析(三):scATAC-seq data integration
使用Signac包进行单细胞ATAC-seq数据分析(四):Merging objects

Cicero是一个用于分析单细胞染色质可及性实验的R工具包。Cicero的主要功能是使用单细胞染色质可及性数据,通过分析共同可及性来预测基因组中的顺式调控相互作用(如增强子和启动子之间的相互作用)。此外,Cicero包还扩展了Monocle的功能,能够利用染色质可及性数据对单细胞进行聚类,排序和差异可及性分析。

Cicero包的简介

Cicero包的主要功能是使用单细胞染色质可及性数据来预测基因组中更可能位于细胞核附近的区域。这可用于鉴定潜在的增强子-启动子互作对,并了解全基因组区域内的顺式相互作用的整体结构。

由于单细胞数据的稀疏性,细胞必须根据相似度进行聚合,以对数据中的各种技术因素进行可靠的校正。最终,Cicero根据用户给定的距离,计算在指定距离内每个可及性peaks对之间的开放性,并给出"Cicero co-accessibility"得分,其分数介于-1和1之间,得分越高,表示更高的共可及性(co-accessibility)。

此外,Cicero包还提供了扩展工具包,可使用Monocle提供的框架来分析单细胞ATAC-seq数据。
Cicero包提供了两种主要的分析功能:

  • 构建和分析顺式调控网络。 Cicero通过分析共可及性(co-accessibility),来识别鉴定潜在的顺式调控相互作用,并使用各种技术对其进行可视化和分析。
  • 常规单细胞染色质可及性分析。 Cicero还扩展了Monocle包,以使用单细胞染色质可及性数据来进行差异可及性(differential accessibility)分析,细胞聚类与可视化,和发育轨迹重建。

Cicero包的安装

通过Bioconductor进行安装

if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
# 安装依赖包
BiocManager::install(c("Gviz", "GenomicRanges", "rtracklayer"))
BiocManager::install("cicero")

# 加载cicero包
library(cicero)

通过Github进行安装

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
# 安装依赖包
BiocManager::install(c("Gviz", "GenomicRanges", "rtracklayer"))
install.packages("devtools")
devtools::install_github("cole-trapnell-lab/cicero-release")

# 加载cicero包
library(cicero)

数据集的加载

Cicero将数据存储在CellDataSet(CDS)类的对象中,该类继承自Bioconductor的ExpressionSet类。我们可以使用以下三个函数来操作该对象:

  • fData: 获取feature的元信息
  • pData: 获取cell/sample的元信息
  • exprs: 获取cell-by-peak的count矩阵

为了修改CDS对象以保留染色质可及性数据而不是表达数据,Cicero使用peaks作为feature数据而不是基因或转录本。具体来说,许多Cicero函数需要形式为chr1_10390134_10391134的peaks值信息,如下所示:


image

Loading data from a simple sparse matrix format

Cicero可以读取以简单稀疏矩阵格式存储的数据,这里以Cicero包自带的一个小数据集cicero_data为例。

# 加载示例数据集
data(cicero_data)
# 查看示例数据
head(cicero_data)
                       Peak                                 Cell Count
140 chr18_30209631_30210783 AGCGATAGGCGCTATGGTGGAATTCAGTCAGGACGT     4
150 chr18_45820294_45821666 AGCGATAGGTAGCAGCTATGGTAATCCTAGGCGAAG     2
185 chr18_32820116_32820994 TAATGCGCCGCTTATCGTTGGCAGCTCGGTACTGAC     2
266 chr18_41888433_41890138 AGCGATAGGCGCTATGGTGGAATTCAGTCAGGACGT     2
273 chr18_33038287_33039444 AGCGATAGGGTTATCGAACTCCATCGAGGTACTGAC     2
285 chr18_25533921_25534483 ATTACTCGAACGCGCAGAGGCGGAGGTCGTACTGAC     1

为了方便起见,Cicero提供了一个名为make_atac_cds的函数。该函数以稀疏矩阵格式将data.frame或文件的路径作为输入。具体来说,此文件应该是由三列组成的制表符分隔的文本文件。 第一列是peak的坐标,格式为“ chr10_100013372_100013596”,第二列是细胞的名称,第三列是整数,表示细胞在该peak重叠的读取次数,且此文件不应包含标题行,如下所示:

image

# 使用make_atac_cds函数将稀疏矩阵转换为CDS对象
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)

# 查看CDS对象
input_cds
CellDataSet (storageMode: environment)
assayData: 6146 features, 200 samples 
  element names: exprs 
protocolData: none
phenoData
  sampleNames: AGCGATAGAACGAATTCGGCGCAATGACCCTATCCT
    AGCGATAGAAGTACGCGATCCGCGGACTGTACTGAC ...
    TCTCGCGCTCTTGAGGTTTTATGACCAAATAGAGGC (200 total)
  varLabels: cells Size_Factor num_genes_expressed
  varMetadata: labelDescription
featureData
  featureNames: chr18_10025_10225 chr18_10603_11103 ...
    chr18_78015362_78016311 (6146 total)
  fvarLabels: site_name chr ... num_cells_expressed (5 total)
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:  

# 查看feature的metadata
head(fData(input_cds))
                              site_name chr    bp1    bp2
chr18_10025_10225     chr18_10025_10225  18  10025  10225
chr18_10603_11103     chr18_10603_11103  18  10603  11103
chr18_11604_13986     chr18_11604_13986  18  11604  13986
chr18_49557_50057     chr18_49557_50057  18  49557  50057
chr18_50240_50740     chr18_50240_50740  18  50240  50740
chr18_104385_104585 chr18_104385_104585  18 104385 104585
                    num_cells_expressed
chr18_10025_10225                     5
chr18_10603_11103                     1
chr18_11604_13986                     9
chr18_49557_50057                     2
chr18_50240_50740                     2
chr18_104385_104585                   1

# 查看cell的metadata
head(pData(input_cds))
                                                                    cells
AGCGATAGAACGAATTCGGCGCAATGACCCTATCCT AGCGATAGAACGAATTCGGCGCAATGACCCTATCCT
AGCGATAGAAGTACGCGATCCGCGGACTGTACTGAC AGCGATAGAAGTACGCGATCCGCGGACTGTACTGAC
AGCGATAGAATACGATAAGGCCGTCAACTAATCTTA AGCGATAGAATACGATAAGGCCGTCAACTAATCTTA
AGCGATAGATTATGCAAGCCAGTACTTGCCTATCCT AGCGATAGATTATGCAAGCCAGTACTTGCCTATCCT
AGCGATAGCAGACTAAGGGGAATTCAGTGGCTCTGA AGCGATAGCAGACTAAGGGGAATTCAGTGGCTCTGA
AGCGATAGCCGTATGATTAGATCTTGGTCAGGACGT AGCGATAGCCGTATGATTAGATCTTGGTCAGGACGT
                                     Size_Factor num_genes_expressed
AGCGATAGAACGAATTCGGCGCAATGACCCTATCCT          NA                 290
AGCGATAGAAGTACGCGATCCGCGGACTGTACTGAC          NA                 490
AGCGATAGAATACGATAAGGCCGTCAACTAATCTTA          NA                 253
AGCGATAGATTATGCAAGCCAGTACTTGCCTATCCT          NA                 181
AGCGATAGCAGACTAAGGGGAATTCAGTGGCTCTGA          NA                  85
AGCGATAGCCGTATGATTAGATCTTGGTCAGGACGT          NA                 251

# 查看cell-by-peak的count矩阵
head(exprs(input_cds))
6 x 200 sparse Matrix of class "dgCMatrix"
   [[ suppressing 32 column names 'AGCGATAGAACGAATTCGGCGCAATGACCCTATCCT', 'AGCGATAGAAGTACGCGATCCGCGGACTGTACTGAC', 'AGCGATAGAATACGATAAGGCCGTCAACTAATCTTA' ... ]]
                                                                           
chr18_10025_10225   . . . . . . . . . . . . . . . . . . . . . . . . . . . .
chr18_10603_11103   . . . . . . . . . . . . . . . . . . . . . . . . . . . .
chr18_11604_13986   . 1 . . . . . . . . . . . . . . . . . . . . . . . . . .
chr18_49557_50057   . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .
chr18_50240_50740   . . . . . . . . . . . . . . . . . . . . . . . . . . . .
chr18_104385_104585 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
                                  
chr18_10025_10225   . . . . ......
chr18_10603_11103   . . . . ......
chr18_11604_13986   . . . . ......
chr18_49557_50057   . . . . ......
chr18_50240_50740   . . . . ......
chr18_104385_104585 . 1 . . ......

 .....suppressing 168 columns in show(); maybe adjust 'options(max.print= *, width = *)'
 ..............................
image

Loading 10X scATAC-seq data

如果我们的scATAC-seq数据来自10x Genomics平台,使用Cell Ranger ATAC软件处理将数据输出到一个名为filtered_peak_bc_matrix的文件夹中,可以通过以下方式将数据转换为CDS对象。

加载cell-by-peak的count矩阵
# read in matrix data using the Matrix package
indata <- Matrix::readMM("filtered_peak_bc_matrix/matrix.mtx") 
# binarize the matrix
indata@x[indata@x > 0] <- 1

# 加载cell的metadata
# format cell info
cellinfo <- read.table("filtered_peak_bc_matrix/barcodes.tsv")
row.names(cellinfo) <- cellinfo$V1
names(cellinfo) <- "cells"

# 加载peak的metadata
# format peak info
peakinfo <- read.table("filtered_peak_bc_matrix/peaks.bed")
names(peakinfo) <- c("chr", "bp1", "bp2")
peakinfo$site_name <- paste(peakinfo$chr, peakinfo$bp1, peakinfo$bp2, sep="_")
row.names(peakinfo) <- peakinfo$site_name

row.names(indata) <- row.names(peakinfo)
colnames(indata) <- row.names(cellinfo)

# 使用newCellDataSet函数构建CDS对象
# make CDS
fd <- methods::new("AnnotatedDataFrame", data = peakinfo)
pd <- methods::new("AnnotatedDataFrame", data = cellinfo)
input_cds <-  suppressWarnings(newCellDataSet(indata,
                            phenoData = pd,
                            featureData = fd,
                            expressionFamily=VGAM::binomialff(),
                            lowerDetectionLimit=0))

input_cds@expressionFamily@vfamily <- "binomialff"
input_cds <- monocle::detectGenes(input_cds)

# 数据初步过滤
#Ensure there are no peaks included with zero reads
input_cds <- input_cds[Matrix::rowSums(exprs(input_cds)) != 0,] 

参考来源:https://cole-trapnell-lab.github.io/cicero-release/docs/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,252评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,886评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,814评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,869评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,888评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,475评论 1 312
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,010评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,924评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,469评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,552评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,680评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,362评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,037评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,519评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,621评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,099评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,691评论 2 361