时间复杂度

近日在研究算法数据结构相关的知识,学习到一个名词,时间复杂度,特来此记录下。

时间复杂度:先来看看《“大话数据结构》是怎么说的“在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。
一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。”
而我总结的是就是根据你输入的条件执行的次数。不知道这么说有没有什么问题,还望指正。

推导大O阶方法有三点:

  1. 用常数1取代运行时间中的所有加法常数。
    我总结的就是固定的,可预知的,不与输入条件有关的执行语句就是为固定值1
  2. 只保留最高阶项。
  3. 去除与这个项相乘的常数。

常数级

int sum = 0,n = 100;      /* 执行一次 */
sum = (1 + n) * n / 2;    /* 执行一次 */
printf("%d", sum);        /* 执行一次 */

上诉代码中执行次数为3.

int sum = 0, n = 100;     /* 执行1次 */
sum = (1 + n) * n / 2;    /* 执行第1次 */
sum = (1 + n) * n / 2;    /* 执行第2次 */
sum = (1 + n) * n / 2;    /* 执行第3次 */
sum = (1 + n) * n / 2;    /* 执行第4次 */
sum = (1 + n) * n / 2;    /* 执行第5次 */
sum = (1 + n) * n / 2;    /* 执行第6次 */
sum = (1 + n) * n / 2;    /* 执行第7次 */
sum = (1 + n) * n / 2;    /* 执行第8次 */
sum = (1 + n) * n / 2;    /* 执行第9次 */
sum = (1 + n) * n / 2;    /* 执行第10次 */
printf("%d", sum);        /* 执行1次 */

这段代码的执行次数为12次。
不管写多少sum = (1 + n) * n / 2; 的重复代码,这个问题的执行次数都是可知的一个常数,与 n 的大小无关的,所以称之为具有O(1)的时间复杂度,又叫常数阶。

线性阶

int i;//执行1次
for (i = 0; i < n; i++)//n+1次
{
    /* 时间复杂度为O(1)的程序步骤序列 *///n 次
}

上述代码执行次数为1+n+1+n = 2n+2次。根据大O推导方法,去除相加常数和相乘的常数,可得这个算法的复杂度为O(n)。

对数阶

int count = 1;
while (count < n)
{
    count = count * 2;
    /* 时间复杂度为O(1)的程序步骤序列 */
}

在这个算法中,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。

平方阶

int i, j;
for (i = 0; i < n; i++)
{
    for (j = 0; j < n; j++)
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

这段代码中,程序共需循环n*n 次,故这个循环的时间复杂度为O(n²)。


屏幕快照.png

像O(n³)开始,过大的n都会使得结果变得不现实。除非是很小的n值,否则哪怕n只是100,都是噩梦般的运行时间。所以这种不切实际的算法时间复杂度,一般我们都不去讨论它。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容