RANSAC平面拟合python实现

毕设中有一个小模块是要在点云中做平面的拟合,翻阅了一些资料后觉得用最简单的最小二乘法加上AX+BY+CZ=D的平面方程就可以实现(使用SVD进行最小二乘法拟合),但是当实现过后发现效果并不是很好,考虑原因应该是因为最小二乘法受误差值当影响比较大(代码也放在文末)。继续查阅资料决定选择RANSAC实现平面拟合。

原理解释

这里参考维基百科对于RANSAC算法原理进行简要解释:
这里要先解释两个名词

内点:拟合模型用到的点
外点:误差点

(个人的理解感觉很像随机森林,投票制)(直线拟合为例)

1 随机选出两个点。(选择出可以估计出模型的最小数据集,如果是平面就选择3个点)
2 两点确定一条直线,拟合出这条直线
3 将所有数据带入这个模型,计算出“内点”的数目;(累加在一定误差范围内的适合当前迭代推出模型的数据)
4 比较当前模型和之前推出的最好的模型的“内点“的数量,记录最大“内点”数的模型参数和“内点”数;
5 重复1-4步,直到迭代结束或者当前模型已经足够好了(“内点数目大于一定数量”)。
(PS:这一部分没有提及对于迭代次数设置的推导,感兴趣的可以去查一查)

python代码实现

废话不多说,上代码

import numpy as np
from ransac import *
import random

def augment(xyzs):
    axyz = np.ones((len(xyzs), 4))
    axyz[:, :3] = xyzs
    return axyz

def estimate(xyzs):
    axyz = augment(xyzs[:3])
    return np.linalg.svd(axyz)[-1][-1, :]

def is_inlier(coeffs, xyz, threshold):
    return np.abs(coeffs.dot(augment([xyz]).T)) < threshold

def run_ransac(data, estimate, is_inlier, sample_size, goal_inliers, max_iterations, stop_at_goal=True, random_seed=None):
    best_ic = 0
    best_model = None
    random.seed(random_seed)
    # random.sample cannot deal with "data" being a numpy array
    data = list(data)
    for i in range(max_iterations):
        s = random.sample(data, int(sample_size))
        m = estimate(s)
        ic = 0
        for j in range(len(data)):
            if is_inlier(m, data[j]):
                ic += 1

        print(s)
        print('estimate:', m,)
        print('# inliers:', ic)

        if ic > best_ic:
            best_ic = ic
            best_model = m
            if ic > goal_inliers and stop_at_goal:
                break
    print('took iterations:', i+1, 'best model:', best_model, 'explains:', best_ic)
    return best_model, best_ic

if __name__ == '__main__':
    import matplotlib
    import matplotlib.pyplot as plt
    from mpl_toolkits import mplot3d
    fig = plt.figure()
    ax = mplot3d.Axes3D(fig)

    def plot_plane(a, b, c, d):
        xx, yy = np.mgrid[:10, :10]
        return xx, yy, (-d - a * xx - b * yy) / c

    n = 100
    max_iterations = 100
    goal_inliers = n * 0.3

    # test data
    xyzs = np.random.random((n, 3)) * 10
    xyzs[:50, 2:] = xyzs[:50, :1]

    ax.scatter3D(xyzs.T[0], xyzs.T[1], xyzs.T[2])

    # RANSAC
    m, b = run_ransac(xyzs, estimate, lambda x, y: is_inlier(x, y, 0.01), 3, goal_inliers, max_iterations) 
    a, b, c, d = m
    xx, yy, zz = plot_plane(a, b, c, d)
    ax.plot_surface(xx, yy, zz, color=(0, 1, 0, 0.5))

    plt.show()
image.png

最小二乘法平面拟合

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

N_POINTS = 10
TARGET_X_SLOPE = 2
TARGET_y_SLOPE = 3
TARGET_OFFSET  = 5
EXTENTS = 5
NOISE = 5

# create random data
xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
zs = []
for i in range(N_POINTS):
    zs.append(xs[i]*TARGET_X_SLOPE + \
              ys[i]*TARGET_y_SLOPE + \
              TARGET_OFFSET + np.random.normal(scale=NOISE))

# plot raw data
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.scatter(xs, ys, zs, color='b')

# do fit
tmp_A = []
tmp_b = []
for i in range(len(XS)):
    tmp_A.append([xs[i], ys[i], 1])
    tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)

# Manual solution
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)

# Or use Scipy
# from scipy.linalg import lstsq
# fit, residual, rnk, s = lstsq(A, b)

print("solution:")
print("%f x + %f y + %f = z" % (fit[0], fit[1], fit[2]))
print("errors:")
print(errors)
print("residual:")
print(residual)

# plot plane
xlim = ax.get_xlim()
ylim = ax.get_ylim()
X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),
                  np.arange(ylim[0], ylim[1]))
Z = np.zeros(X.shape)
for r in range(X.shape[0]):
    for c in range(X.shape[1]):
        Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]
ax.plot_wireframe(X,Y,Z, color='k')

ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354