Human-level concept learning through probabilistic program induction
凭借概率规划归纳法进行人类层级的概念学习
Summary:
As we all know that machine learning algrithms tend to performe better with more trainning examples. While people can learn a concept from a example or few examples. On one-shot classification task,this paper shows us a Bayesian program learning(BPL) framework, BPL learns concepts like human do,it can get the essence of handwritten characters with few examples. It incorporates the principles of compositionality, causality, and learning to learn. Isn't it a good idea of combining DCNN with BPL ?
阅读训练(day02)
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...