读《不等长时间序列滑窗STS距离聚类算法》论文

  1. WHY

传统时间序列聚类的缺点:

1)时间序列聚类的研究一般采用等长划分,会丢失重要特征点,对聚类结果有负面影响。

2)采用时间序列测量值不能准确度量相似度。

image.png

如下埃博拉出血热、卫生部在数值上很相似,但教育部和卫生部在形状更相似。若是以形状作为度量传统的欧氏距离可能就不太合适了。

不等长时间序列滑窗STS聚类算法:

1)通过标准分数z_score预处理,消除时间序列观测值数量级差异的影响。

2)更改了相似度计算的方式,采用基于滑窗的方法计算不等长序列的距离。

3)采用类k-means的聚类算法的中心曲线计算方法。

  1. WHAT

时间序列数据因其趋势信息的直观展现形式,广泛应用于社交网络、互联网搜索和新闻媒体数据分析中。例如:Google应用搜索流感的相关信息的时间序列预测流感爆发趋势。根据某话题热度时间序列数据趋势的规律性,通过聚类区分不同类型的时间序列数据。同一类簇的Twitter话题具有相同或相似的发展趋势,进而应用于话题的发展趋势的预测。

时间序列聚类算法可以分为两类。

1)基于原始数据的时间序列聚类算法。

2)基于特征的时间序列聚类算法。

基于特征的时间序列聚类算法指根据原始数据从时间序列中提取形态特征(极值点位置、分段斜率)、结构特征(平均值、方差等统计值特征)、模型特征(模型的预测值),从而根据这些特征值进行聚类。这类方法的优点解决了不等长时间序列聚类问题,缺点是减弱了原始数据值得影响,聚类的形状趋势信息往往比较粗糙。

3. HOW

一、距离度量公式

STS距离计算的是累加时间序列间每个时间间隔斜率差的平方,公式


image.png

image.png

如上图所示,g1、g2和g2、g3的欧式距离的数值更相近。g1、g2的STS距离大于g2、g3的数值。在形状距离上,STS距离计算方式表现更好,一定程度上可以解决欧式距离度量时间序列局部特征信息确实和受观测数值数量级差异影响大的问题,但是依旧无法度量不等长时间序列的距离。

基于滑窗的STS距离公式。


image.png

如上图所示,当计算不同长度的时间序列的s和r的距离时,先不断平移时间序列s,然后找到s和r距离最近的字段,就如同上图虚线之间的位置,此时s和r距离最近,这个最近距离作为s和r之间的距离。


image.png

二、预处理过程

z-score标准分数用数据观测值和观测值平均值的距离代替原观测值。z-score处理后的数据平均值为0,标准差为1。标准差的作用是统一量纲,去除数值的数量级差异影响。

总结

本论文提出了形状距离的不等长时间序列的聚类方法。我们可以学到的有

1)z-score统一量纲,消除数值数量级差异,聚类效果更好。

2)计算x和y时间序列的STS距离,可以平移其中一个时间序列,求最小值作为STS距离值,这就消除了同一时间序列不同起始点的影响。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容

  • 时间序列的聚类 张戎​ 在机器学习领域,聚类问题一直是一个非常常见的问题。无论是在传统的机器学习(Machine ...
    AIOPstack阅读 7,416评论 0 1
  • 原文地址我在最近的工作中遇到了一个问题,问题是我需要根据银行账户在一定时间内的使用信息对该账户在未来的一段时间是否...
    七相SIM阅读 29,618评论 5 21
  • 本文比较了基于欧氏距离和DTW聚类对时间序列聚类和分类的可靠性。 从抽样的样本中发现了基于DTW聚类算法远远比基于...
    流浪在北京的苹果阅读 4,763评论 2 5
  • 时间序列异常检测 本文总结了我在时间序列异常算法方面的一些经验。读者需要对常规机械学习算法有一定的了解。希望本文能...
    hzyido阅读 19,906评论 7 24
  • 久违的晴天,家长会。 家长大会开好到教室时,离放学已经没多少时间了。班主任说已经安排了三个家长分享经验。 放学铃声...
    飘雪儿5阅读 7,518评论 16 22