一、题目
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
二、解答
2.1 方法一:暴力法
假设我们有一个函数 boolean allUnique(String substring) ,如果子字符串中的字符都是唯一的,它会返回 true,否则会返回 false。 我们可以遍历给定字符串 s 的所有可能的子字符串并调用函数 allUnique。 如果事实证明返回值为 true,那么我们将会更新无重复字符子串的最大长度的答案。
现在让我们填补缺少的部分:
为了枚举给定字符串的所有子字符串,我们需要枚举它们开始和结束的索引。假设开始和结束的索引分别为 ii 和 jj。那么我们有 0 <= i <j <=n(这里的结束索引 j是按惯例排除的)。因此,使用 i从 0 到 n - 1 以及 j 从 i+1到 n 这两个嵌套的循环,我们可以枚举出 s 的所有子字符串。
要检查一个字符串是否有重复字符,我们可以使用集合。我们遍历字符串中的所有字符,并将它们逐个放入 set 中。在放置一个字符之前,我们检查该集合是否已经包含它。如果包含,我们会返回 false。循环结束后,我们返回 true。
public class Solution {
public int lengthOfLongestSubstring(String s) {
int n = s.length();
int ans = 0;
for (int i = 0; i < n; i++)
for (int j = i + 1; j <= n; j++)
if (allUnique(s, i, j)) ans = Math.max(ans, j - i);
return ans;
}
public boolean allUnique(String s, int start, int end) {
Set<Character> set = new HashSet<>();
for (int i = start; i < end; i++) {
Character ch = s.charAt(i);
if (set.contains(ch)) return false;
set.add(ch);
}
return true;
}
}
时间复杂度:O(n^3)。
2.2 方法二:滑动窗口
暴力法非常简单,但它太慢了。那么我们该如何优化它呢?
在暴力法中,我们会反复检查一个子字符串是否含有有重复的字符,但这是没有必要的。如果从索引 i 到 j - 1 之间的子字符串 sij已经被检查为没有重复字符。我们只需要检查 s[j] 对应的字符是否已经存在于子字符串 sij中。
要检查一个字符是否已经在子字符串中,我们可以检查整个子字符串,这将产生一个复杂度为 O(n^2)的算法,但我们可以做得更好。
通过使用 HashSet 作为滑动窗口,我们可以用 O(1) 的时间来完成对字符是否在当前的子字符串中的检查。
滑动窗口是数组/字符串问题中常用的抽象概念。 窗口通常是在数组/字符串中由开始和结束索引定义的一系列元素的集合,即 [i, j)(左闭,右开)。而滑动窗口是可以将两个边界向某一方向“滑动”的窗口。例如,我们将 [i, j) 向右滑动 1 个元素,则它将变为 [i+1, j+1)(左闭,右开)。
回到我们的问题,我们使用 HashSet 将字符存储在当前窗口 [i, j)(最初 j = i)中。 然后我们向右侧滑动索引 j,如果它不在 HashSet 中,我们会继续滑动 j。直到 s[j] 已经存在于 HashSet 中。此时,我们找到的没有重复字符的最长子字符串将会以索引 i 开头。如果我们对所有的 i 这样做,就可以得到答案。
public class Solution {
public int lengthOfLongestSubstring(String s) {
int n = s.length();
Set<Character> set = new HashSet<>();
int ans = 0, i = 0, j = 0;
while (i < n && j < n) {
// try to extend the range [i, j]
if (!set.contains(s.charAt(j))){
set.add(s.charAt(j++));
ans = Math.max(ans, j - i);
}
else {
set.remove(s.charAt(i++));
}
}
return ans;
}
}
时间复杂度:O(2n) = O(n),在最糟糕的情况下,每个字符将被 i 和 j 访问两次。
2.3 方法三:优化滑动窗口
public int lengthOfLongestSubstring(String s) {
int n = s.length(), maxLength = 0;
int index = 0;
Map<Character, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
if (map.containsKey(s.charAt(i))) {
index = Math.max(map.get(s.charAt(i)) + 1, index);
}
maxLength = Math.max(maxLength, i - index + 1);
map.put(s.charAt(i), i);
}
return maxLength;
}