Cibersort实战

rm(list=ls())

load(file='../Rdata/@step3_DEG_LN.Rdata')
# exprSet=new_exprSet
# phe<- data.frame(ID=pheno$geo_accession,gender=pheno$`gender:ch1`,age=pheno$`age:ch1`,
#                  differentiation=pheno$`his type:ch1`,T_stage= pheno$`depth:ch1`,
#                  N_stage=pheno$`lymph node metastasis:ch1`)

# phe<- phe[is.na(phe$gender)==F,]
# phe<- phe[phe$gender!='NA',]
# phe<- phe[phe$N_stage!='NA',]
phe$N_stage<- factor(as.character(phe$N_stage))
exprSet<- exprSet[,colnames(exprSet)%in%phe$GSM_ID]
dim(exprSet)
colnames(phe)
# exprSet<- exprSet[,1:5]
exprSet<- exprSet[order(row.names(exprSet)),]
# exprSet[1:5,1:5]
match(colnames(exprSet),phe$GSM_ID)
##### 基因如果存在一些数字开头的名字 可能会出错
# exprSet<- exprSet[-(1:2),]

#### 如果实在不行就只提取500个基因进行计算
# ##### cibersort 计算只需要500多个基因就可以了。
# LM22 <- read.delim("~/R Project/ESCC-undermine/GSE47404/LN_related_genes/LM22.txt")
# exprSet<- exprSet[rownames(exprSet)%in%LM22$Gene.symbol,]
# write.table(exprSet,file = '../Rdata/for_cibersort_mitrix.txt',sep = '\t',quote=FALSE)

###### 输入结果后作图
library(reshape2)
library(ggthemes)
library(ggpubr)
library("scales")
cibersort_result<- read.csv(file = '../Rdata/CIBERSORT.Output_Job13.csv')
colnames(cibersort_result)
match(cibersort_result$Input.Sample,phe$GSM_ID)
cibersort_result<- cibersort_result[,-c(1,24:26)]
### 只挑选一部分细胞
cibersort_result<- cibersort_result[,c(1,4,7,9,14,15,16,18,19,20,22)]

gene_name<- 'GPD1L'
exprSet<- as.matrix(exprSet)
cibersort_result$group<- ifelse(exprSet[gene_name,]>quantile(exprSet[gene_name,],0.5),'High','Low')
cibersort_result_L<-melt(cibersort_result,id.vars = c('group'),variable.name="TILs",value.name="value")
library(ggplot2)
library(stringr)
p=ggplot(cibersort_result_L,aes(x=TILs,y=value,fill=group))+geom_boxplot()+
  stat_compare_means(method = "wilcox.test",label="p.signif")
  # scale_x_discrete(labels=colnames(cibersort_result))+
  # theme(axis.title  = element_text(,angle = 45,hjust = .5, vjust = .5))
print(p)
ggsave('../figure/TILs_ggplot.pdf', p)

ggplot(cibersort_result_L,aes(group,value,fill=TILs,colour = TILs))+
  geom_bar(stat="identity",position="fill")+
  ggtitle("LM22")+
  theme_classic()+
  xlab(gene_name)+
  scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9","black","red","chocolate","deeppink","darkmagenta",
                             "#000000", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7",'green','#FFB6C1',
                             '#DC143C','#DDA0DD','#800080','#6A5ACD','#87CEEB','#BDB76B','#FF4500'))+
  scale_colour_manual(values=c("#999999", "#E69F00", "#56B4E9","black","red","chocolate","deeppink","darkmagenta",
                               "#000000", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7",'green','#FFB6C1',
                               '#DC143C','#DDA0DD','#800080','#6A5ACD','#87CEEB','#BDB76B','#FF4500'))
  
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容