基于HBase和Spark构建企业级数据处理平台

本文整理自来自阿里巴巴的沐远的分享,由大数据技术与架构进行整理和分享。

场景需求和挑战

面临的场景

金融风控

  • 用户画像库
  • 爬虫抓取信息
  • 反欺诈系统
  • 订单数据

个性化推荐

  • 用户行为分析
  • 用户画像
  • 推荐引擎
  • 海量实时数据处理

**社交Feeds **

  • 海量帖子、文章
  • 聊天、评论
  • 海量实时数据处理

时空时序

  • 监控数据
  • 轨迹、设备数据
  • 地理信息
  • 区域分布统计
  • 区域查询

大数据

  • 维表和结果表
  • 离线分析
  • 海量实时数据存储

新的挑战

Apache HBase(在线查询) 的特点有:

  • 松散表结构(Schema free)
  • 随机查询、范围查询
  • 原生海量数据分布式存储
  • 高吞吐、低延迟
  • 在线分布式数据库
  • 多版本、增量导入、多维删除

面临的新的挑战:

  • 流式及批量入库
  • 复杂分析
  • 机器学习、图计算
  • 生态及联邦分析

选择Spark的原因

file
  • 快:通过query的执行优化、Cache等技术,Spark能够对任意数据量的数据进行快速分析。逻辑回归场景比Hadoop快100倍
  • 一站式:Spark同时支持复杂SQL分析、流式处理、机器学习、图计算等模型,且一个应用中可组合上面多个模型解决场景问题
  • 开发者友好:同时友好支持SQL、Python、Scala、Java、R多种开发者语言
  • 优秀的生态:支持与Ka=a、HBase、Cassandra、MongoDB、Redis、MYSQL、SQL Server等配合使用

平台机构及案例

一站式数据处理平台架构

file
  • 数据入库:借助于Spark Streaming,能够做流式ETL以及增量入库到HBase/Phoenix。
  • 在线查询:HBase/Phoenix能够对外提供高并发的在线查询
  • 离线分析及算法:如果HBase/Phoenix的数据需要做复杂分析及算法分析,可以使用Spark的SQL、机器学习、图计算等

典型业务场景:爬虫+搜索引擎

file
  • 性能:流吞吐 20万条/秒
  • 查询能力:HBase自动同步到solr对外提供全文检索的查询
  • 一站式解决方案:Spark服务原生支持通过SQL读取HBase 数据能力进行ETL,Spark + HBase +Solr一站式数据处理平台

典型业务场景:大数据风控系统

file
  • Spark同时支持事中及事后风控
  • Spark友好对接HBase、RDS、MongoDB多种在线库

典型业务场景:构建数据仓库(推荐、风控)

file
  • 毫秒级识别拦截代充订单,并发十万量级
  • Spark优秀的计算能力:Spark基于列式存储Parquet的分析在数据量大的情况下比Greenplum集群有10倍的性能提升
  • 一站式解决方案:Spark服务原生支持通过SQL读取
    HBase SQL(Phoenix)数据能力
  • 聚焦业务:全托管的Spark服务保证了作业运行的稳定性,释放运维人力,同时数据工作台降低了spark作业管理成本

原理及最佳实践

Spark API的发展经历了RDD、DataFrame、DataSet


file

Spark Streaming采用的是Micro-Batch方式处理实时数据。


file

作业堆积、延迟高、并发不够?

  • 每批次的并发:调大kafka的订阅的分区、spark.streaming.blockInterval
  • 代码热点优化:查看堆栈、broadcast、代码优化

Spark流式处理入库HBase

file

Micro-Batch Processing:100ms延迟
ConKnuous Processing:1ms延迟

Spark HBase Connector的一些优化

file

代码托管在:https://github.com/aliyun/aliyun-apsaradb-hbase-demo (包含Spark操作Hbase和Phoenix)

关注我的公众号,后台回复【JAVAPDF】获取200页面试题!
5万人关注的大数据成神之路,不来了解一下吗?
5万人关注的大数据成神之路,真的不来了解一下吗?
5万人关注的大数据成神之路,确定真的不来了解一下吗?

欢迎您关注《大数据成神之路》
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容