SiamRPN:High Performance Visual Tracking with Siamese Region Proposal Network 孪生网络

原文链接

论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf

摘要

大多数性能优越的视觉目标跟踪器很难有实时速度。在这篇文章中,我们提出了孪生候选区域生成网络(Siamese region proposal network),简称Siamese-RPN,它能够利用大尺度的图像对离线端到端训练。具体来讲,这个结构包含用于特征提取的孪生子网络(Siamese subnetwork)和候选区域生成网络(region proposal subnetwork),其中候选区域生成网络包含分类回归两条支路。在跟踪阶段,我们提出的方法被构造成为单样本检测任务(one-shot detection task)。

我们预先计算孪生子网络中的模板支路,也就是第一帧,并且将它构造成一个检测支路中区域提取网络里面的一个卷积层,用于在线跟踪。得益于这些改良,传统的多尺度测试和在线微调可以被舍弃,这样做也大大提高了速度。Siamese-RPN跑出了160FPS的速度,并且在VOT2015,VOT2016和VOT2017上取得了领先的成绩。

1.引言

与适当设计的最先进的基于相关滤波器的方法相比,基于离线训练的基于深度学习的跟踪器可以获得较好的结果。关键是候选的孪生候选区域生成网络(Siamese-RPN)。它由模板分支检测分支组成,它们以端到端的方式对大规模图像对进行离线训练。受到最先进的候选区域提取方法RPN 的启发,我们对相关feature map进行提议提取。与标准RPN不同,我们使用两个分支的相关特征映射进行提议提取。在跟踪任务中,我们没有预定义的类别,因此我们需要模板分支将目标的外观信息编码到RPN要素图中以区分前景和背景。

在跟踪阶段,作者将此任务视为单目标检测任务(one-shot detection),什么意思呢,就是把第一帧的bb视为检测的样例,在其余帧里面检测与它相似的目标。

综上所述,作者的贡献有以下三点:

1.提出了Siamese region proposal network,能够利用ILSVRC和YouTube-BB大量的数据进行离线端到端训练。

2.在跟踪阶段将跟踪任务构造出局部单目标检测任务。

3.在VOT2015, VOT2016和VOT2017上取得了领先的性能,并且速度能都达到160fps。

2.相关工作

2.1 RPN

RPN即Region Proposal Network,是用RON来选择感兴趣区域的,即proposal extraction。例如,如果一个区域的p>0.5,则认为这个区域中可能是80个类别中的某一类,具体是哪一类现在还不清楚。到此为止,网络只需要把这些可能含有物体的区域选取出来就可以了,这些被选取出来的区域又叫做ROI(Region of Interests),即感兴趣的区域。当然RPN同时也会在feature map上框定这些ROI感兴趣区域的大致位置,即输出Bounding Box。

RPN详细介绍:https://mp.weixin.qq.com/s/VXgbJPVoZKjcaZjuNwgh-A

2.2 One-shot learning

最常见的例子就是人脸检测,只知道一张图片上的信息,用这些信息来匹配出要检测的图片,这就是单样本检测,也可以称之为一次学习。

3 Siamese-RPN framework

3.1 SiamFC

SiamFC详细介绍:https://mp.weixin.qq.com/s/kS9osb2JBXbgb_WGU_3mcQ

所谓的Siamese(孪生)网络,是指网络的主体结构分上下两支,这两支像双胞胎一样,共享卷积层的权值。上面一支(z)称为模板分支(template),用来提取模板帧的特征。φ表示一种特征提取方法,文中提取的是深度特征,经过全卷积网络后得到一个6×6×128的feature map φ(z)。下面一支(x)称为检测分支(search),是根据上一帧的结果在当前帧上crop出的search region。同样提取了深度特征之后得到一个22×22×128的feature map φ(x)。模版支的feature map在当前帧的检测区域的feature map上做匹配操作,可以看成是φ(z)在φ(x)上滑动搜索,最后得到一个响应图,图上响应最大的点就是对应这一帧目标的位置。

Siamese网络的优点在于,把tracking任务做成了一个检测/匹配任务,整个tracking过程不需要更新网络,这使得算法的速度可以很快(FPS:80+)。此外,续作CFNet将特征提取和特征判别这两个任务做成了一个端到端的任务,第一次将深度网络和相关滤波结合在一起学习。

Siamese也有明显的缺陷:

1.模板支只在第一帧进行,这使得模版特征对目标的变化不是很适应,当目标发生较大变化时,来自第一帧的特征可能不足以表征目标的特征。至于为什么只在第一帧提取模版特征,我认为可能因为:

(1)第一帧的特征最可靠也最鲁棒,在tracking过程中无法确定哪一帧的结果可靠的情况下,只用第一帧特征足以得到不错的精度。

(2)只在第一帧提取模板特征的算法更精简,速度更快。

2.Siamese的方法只能得到目标的中心位置,但是得不到目标的尺寸,所以只能采取简单的多尺度加回归,这即增加了计算量,同时也不够精确。

网络训练原理

如图所示,上一帧的目标模板与下一帧的搜索区域可以构成很多对的模板-候选对(exemplar-candidate pair), 但是根据判别式跟踪原理,仅仅下一帧的目标与上一帧的目标区域(即 exemplar of T frame-exemplar of T+1 frame)属于模型的正样本,其余大量的exemplar-candidate pair都是负样本。这样就完成了网络结构的端到端的训练。

3.2 Siamese-RPN

左边是孪生网络结构,上下支路的网络结构和参数完全相同,上面是输入第一帧的bounding box,靠此信息检测候选区域中的目标,即模板帧。下面是待检测帧,显然,待检测帧的搜索区域比模板帧的区域大。中间是RPN结构,又分为两部分,上部分是分类支路,模板帧和检测帧的经过孪生网络后的特征再经过一个卷积层,模板帧特征经过卷积层后变为2k×256通道,k是anchor数量,因为分为两类,所以是2k。下面是边界框回归支路,因为有四个量[x, y, w, h],所以是4k右边是输出。

3.3 孪生特征提取子网络

预训练的AlexNet,剔除了conv2 conv4两层 。φ(z)是模板帧输出,φ(x)是检测帧输出

3.4 候选区域提取子网络

分类支路和回归支路分别对模板帧和检测帧的特征进行卷积运算:

包含2k个通道向量,中的每个点表示正负激励,通过交叉熵损失分类;包含4k个通道向量,每个点表示anchor和gt之间的dx,dy,dw,dh,通过smooth L1 损失得到:

A^{cls}_{w×h×2k}=[\psi(x)]_{cls}×[\psi(z)]_{cls}\\
A^{reg}_{w×h×4k}=[\psi(x)]_{reg}×[\psi(z)]_{reg}

Ax, Ay, Aw, Ah是anchor boxes中心点坐标和长宽; Tx, Ty, Tw, Th是gt boxes,为什么要这样呢,因为不同图片之间的尺寸存在差异,要对它们做正规化。

smoothL1损失:

\delta[0]=\frac{T_x-A_x}{A_w},
\delta[1]=\frac{T_y-A_y}{A_h}\\
\delta[2]=ln\frac{T_w}{A_w},
\delta[3]=ln\frac{T_h}{A_h}

3.5 训练阶段:端到端训练孪生RPN

因为跟踪中连续两帧的变化并不是很大,所以anchor只采用一种尺度,5种不同的长宽比(与RPN中的3×3个anchor不同)。当IoU大于0.6时是前景,小于0.3时是背景。

4. Tracking as one-shot detection

平均损失函数L:

\min_{W} \frac{1}{n} \sum_{i=1}^n L(\psi(x_i;w(z_i,W)),l_i)

如上所述,让z表示模板patch,x表示检测patch,函数φ表示Siamese特征提取子网,函数ζ表示区域建议子网,则一次性检测任务可以表示为:

\min_{W} \frac{1}{n} \sum_{i=1}^n L(\zeta(\psi(x_i;W);\psi(z_i;W)),l_i)


如图,紫色的部分像原始的Siamese网络,经过同一个CNN之后得到了两个feature map,蓝色的部分是RPN。模板帧在RPN中经过卷积层, 和 当作检测所用的核。

简单的说,就是预训练模版分支,利用第一帧的目标特征输出一系列weights,而这些weights,包含了目标的信息,作为检测分支RPN网络的参数去detect目标。这样做的好处是:

(1)模板支能学到一个encode了目标的特征,用这个特征去寻找目标,这会比直接用第一帧的feature map去做匹配更鲁棒。

(2)相比原始的Siamese网络,RPN网络可以直接回归出目标的坐标和尺寸,既精确,又不需要像multi-scale一样浪费时间。

经过网络后,我们将分类和回归特征映射表示为点集:

A^{cls}_{w×h×2k}={(x_i^{cls},y_j^{cls},c_l^{cls})}\\
A^{reg}_{w×h×4k}={(x_i^{reg},y_i^{reg},dx_p^{reg},dy_p^{reg},dw_p^{reg},dh_p^{reg})}

由于分类特征图上的奇数通道代表正激活,我们收集所有中的前K个点,其中l是奇数,并表示点集为:

CLS^*={(x_i^{cls},y_j^{cls},c_l^{cls})_{i∈I,j∈J,l∈L}}

其中I,J,L是一些索引集。

变量i和j分别编码相应锚点的位置,l编码相应锚点的比率,因此我们可以导出相应的锚点集合为:

ANC^*={(x_i^{an},y_j^{an},w_l^{an},h_l^{an})_{i∈I,j∈J,l∈L}}

此外,我们发现上ANC*的激活得到相应的细化坐标为:

FEG^*={(x_i^{reg},y_j^{reg},dx_l^{reg},dy_l^{reg},dw_l^{reg},dh_l^{reg})_{i∈I,j∈J,l∈L}}

因为是分类,选前k个点,分两步选择:

第一步,舍弃掉距离中心太远的bb,只在一个比原始特征图小的固定正方形范围里选择,如下图:

中心距离为7,仔细看图可以看出,每个网格都有k个矩形。

第二步,用余弦窗(抑制距离过大的)和尺度变化惩罚(抑制尺度大变化)来对proposal进行排序,选最好的。具体公式可看论文。

用这些点对应的anchor box结合回归结果得出bounding box:

x_i^{pro}=x_i^{an}+dx_l^{reg}*w_l^{an}\\
y_j^{pro}=y_j^{an}+dy_l^{reg}*h_l^{an}\\
w_l^{pro}=w_l^{an}*e^{dw_l}\\
h_l^{pro}=h_l^{an}*e^{dh_l}

an就是anchor的框,pro是最终得出的回归后的边界框 至此,proposals set就选好了。

然后再通过非极大抑制(NMS),顾名思义,就是将不是极大的框都去除掉,由于anchor一般是有重叠的overlap,因此,相同object的proposals也存在重叠。为了解决重叠proposal问题,采用NMS算法处理:两个proposal间IoU大于预设阈值,则丢弃score较低的proposal。

IoU阈值的预设需要谨慎处理,如果IoU值太小,可能丢失objects的一些 proposals;如果IoU值过大,可能会导致objects出现很多proposals。IoU典型值为0.6。

5.实施细节

我们使用从ImageNet [28]预训练的改进的AlexNet,前三个卷积层的参数固定,只调整Siamese-RPN中的最后两个卷积层。这些参数是通过使用SGD优化等式5中的损耗函数而获得的。共执行了50个epoch,log space的学习率从10-2降低到10-6。我们从VID和Youtube-BB中提取图像对,通过选择间隔小于100的帧并执行进一步的裁剪程序。如果目标边界框的大小表示为(w,h),我们以大小A×A为中心裁剪模板补丁,其定义如下:

(w+p)×(h+p)=A^2

其中p =(w + h)/2

之后将其调整为127×127。以相同的方式在当前帧上裁剪检测补丁,其大小是模板补丁的两倍,然后调整为255×255。

在推理阶段,由于我们将在线跟踪制定为一次性检测任务,因此没有在线适应。我们的实验是在带有Intel i7,12G RAM,NVidia GTX 1060的PC上使用PyTorch实现的。

学习更多编程知识,请关注我的公众号:

代码的路

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容