Investments Notes

1.投资组合

  • 资产
    Z = \sum_{i=1}^n Z_i \tag{1}
    *\quad Z:总资产
    *\quad Z_i:投资在证券i的资金
    \,

  • 投资策略集
    D=\left\{x_1,x_2,\cdots,x_n\,\bigg|\,\sum_{i=1}^n x_i=1\right\} \tag{2}

    其中
    x_i=\frac{Z_i}{Z} \tag{3}
    *\quad x_i<0:允许卖空
    *\quad x_i:比例,权重

证券1 证券2 \dots 证券k \dots 证券n
收益率 r_1 r_2 \dots r_k \cdots r_n
期望收益率 E(r_1) E(r_2) \cdots E(r_k) \dots E(r_n)
标准差 \sigma_1 \sigma_2 \cdots \sigma_k \dots \sigma_n
比例 x_1 x_2 \cdots x_k \dots x_n
  • 投资组合
    \,
  • 收益率
    r_P=\sum_{i=1}^n x_ir_i \tag{4}
  • 期望收益率
    E\left(r_P\right)=\sum_{i=1}^n x_i\cdot E\left(r_i\right) \tag{5}
  • 风险
    \begin{aligned} \sigma_P^2&=Cov\left(\sum_{i=1}^n x_ir_i,\,\sum_{i=1}^n x_ir_i\right)\\ &=\sum_{i}\sum_{j} x_ix_j\sigma_{ij}\\ &=\sum_{i} x_i^2\sigma_i^2+2\sum_{i}\sum_{j>i} x_ix_j\sigma_i\sigma_j \end{aligned} \tag{6}
    \quad\sigma_{ij}=Cov\left(r_i,\,r_j\right)
    \quad\sigma_{ii}=\sigma_i^2

Let

\begin{aligned} \textbf{X}&=\left(x_1,x_2,\cdots,x_n\right)^T \\\,\\ \textbf{r}&=\left(r_1,r_2,\cdots,r_n\right)^T\\\,\\ \textbf{R}&=\left(E\left(r_1\right),E\left(r_2\right),\cdots,E\left(r_n\right)\right)^T\\\,\\ \textbf{e}&=\left(1,1,\cdots,1\right)^T\\\,\\ \textbf{V}&=\left(\sigma_{ij}\right)_{n\times n}= \begin{bmatrix} \sigma_{11}&\sigma_{12}&\cdots&\sigma_{1n}\\ \sigma_{21}&\sigma_{22}&\cdots&\sigma_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ \sigma_{n1}&\sigma_{n2}&\cdots&\sigma_{nn}\\ \end{bmatrix}_{\,n\times n} \end{aligned} \tag{7}
*\quad\textbf V为实对称正定矩阵

Hence

\begin{aligned} \textbf{X}^T\textbf{r}&=r_P\\\,\\ \textbf{X}^T\textbf{R}&=E\left(r_P\right)\\\,\\ \textbf{X}^T\textbf{e}&=1\\\,\\\ \textbf{X}^T\textbf{V}\textbf{X}&=\sigma_P^2 \end{aligned} \tag{8}

  • 分散化作用

    当n充分大时,x_i\rightarrow\frac{1}{n}

    于是有
    \begin{aligned} \sigma_P^2 &=\sum_{i} x_i^2\sigma_i^2+2\sum_{i}\sum_{j>i} x_ix_j\sigma_i\sigma_j\\ &\rightarrow\frac{1}{n}\left(\frac{\sum\sigma_i^2}{n}\right)+2\cdot\frac{1}{n^2}\cdot\frac{\sum\sum\sigma_{ij}}{\frac{n^2-n}{2}}\cdot\frac{n^2-n}{2} \end{aligned} \tag{9}

    我们称上式中的第一项为非系统性风险,第二项为系统性风险

    可以看出,n充分大时,系统性风险逐渐趋于0,而非系统性风险趋于证券间的平均协方差

2.M-V模型

  • 现代投资组合理论(Modern Portfolio Theory)

假设:
i.收益的度量
ii.风险的度量
iii.理性
iv.市场无摩擦
v.证券无限可分

  • 投资组合选择原则风险偏好(风险偏好)
  • 理性选择原则
  • 不满足性:
    投资者在其余条件相同的两个投资组合中进行选择时,总是选择预期回报率较高的组合。
  • 厌恶风险:
    投资者在其余条件相同的情况下,将选择标准差较小的组合。
  • 不同的风险态度

厌恶风险
风险中性
爱好风险

投资者的目标是投资效用最大化,而投资效用取决于预期收益率与风险。预期收益率带来正的效用,风险带来负的效用。引入无差异曲线以反映效用水平,一条无差异曲线代表给投资者带来同样满足程度的预期收益率和风险的所有组合。

  • 无差异曲线

特征:
i.无差异曲线的斜率为正;
ii.无差异曲线是向下凸的;
iii.同一投资者有无限多条无差异曲线;
iv.同一投资者在同一时间、同一时点的任何两条无差异曲线都不能相交。

*注意:无差异曲线的斜率越大,投资者越厌恶风险。

  • 投资效用函数(\textbf{U}
    U=U\left(\bar{R},\sigma\right) \tag{10}

    效用函数的形式多样,如
    U=\bar{R}-\frac{1}{2}A\sigma^2 \tag{11}

    其中,A表示投资者的风险厌恶系数,其典型值在24之间。

  • M-V模型描述

    两证券组合P
    \begin{cases} \begin{aligned} r_P&=x_1r_1+x_2r_2\\ E\left(r_P\right)&=x_1E\left(r_1\right)+x_2E\left(r_2\right)\\ \sigma_P^2&=x_1^2\sigma_1^2+x_2^2\sigma_2^2+2x_1x_2\sigma_{12}\\ 1&=x_1+x_2\\ \end{aligned} \end{cases} \tag{12}
    消去x_1x_2,得到以\sigma_PE\left(r_P\right)为横、纵坐标的双曲线的一支:

    对于多个证券,以\sigma_PE\left(r_P\right)为横、纵坐标,所有投资组合双曲线一支围成的部分:


    \,

    • 可行集的数学表达为:

    G=\left\{\left(\sigma_P^2,E\left(r_P\right)\right)\left|\left\{\begin{aligned}E\left(r_P\right)&=\textbf X^T\textbf R\\\sigma_P^2&=\textbf X^T\textbf V\textbf X\end{aligned}\right.\right.,\textbf X\in D\right\} \tag{13}
    \,

    • 其中投资组合的边界,成为最小方差组合(有效集):
      \,
      \partial G=\left\{\left(\sigma_P^2,E\left(r_P\right)\right)\left|\begin{aligned}&{\rm min}\,\sigma_P^2=\textbf X^T\textbf V\textbf X\\&\begin{cases}\textbf X^T\textbf R=\mu\\\textbf X^T\textbf e=1\\\end{cases}\end{aligned}\right.,\mu为参数\right\} \tag{14}

    \,

    • 全局最小方差组合\,(Global\,\,Minimum\,\,Variance\,\,Portfolio)\,为曲线左顶点,简记为MVP
      \,
    • 位于MVP上方的曲线称为有效前沿\,(Efficient\,\,Frontier)\,
  • 数学推导

    Problem:
    \begin{aligned}&{\rm min}\,\sigma_P^2=\textbf X^T\textbf V\textbf X\\&s.t.\,\begin{cases}\textbf X^T\textbf R=\mu\\\textbf X^T\textbf e=1\\\end{cases}\end{aligned} \tag{15}
    Solution:

    \quad Let:
    L=\textbf X^T\textbf V\textbf X-\lambda_1\left(\textbf X^T\textbf R-\mu\right)-\lambda_2\left(\textbf X^T\textbf e-1\right) \tag{16}

    \quad Hence:
    \Longrightarrow\left\{\begin{aligned}&\frac{\partial L}{\partial\textbf X}=\left(\frac{\partial L}{\partial\textbf X_1},\cdots,\frac{\partial L}{\partial\textbf X_n}\right)^T=2\textbf V\textbf X-\lambda_1\textbf R-\lambda_2\textbf e=\textbf 0\\&\frac{\partial L}{\partial \lambda_1}=-\left(\textbf X^T\textbf R-\mu\right)=0\\&\frac{\partial L}{\partial \lambda_2}=-\left(\textbf X^T\textbf e-1\right)=0\end{aligned}\right. \tag{17}

    \quad Thus:
    \textbf X=\frac{\lambda_1}{2}\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf V^{-1}\textbf e \tag{18}

    \quad Then\,\,we\,\,get:
    \left\{\begin{aligned} \frac{\lambda_1}{2}\textbf R^T\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf e^T\textbf V^{-1}\textbf R&=\mu\\ \frac{\lambda_1}{2}\textbf R^T\textbf V^{-1}\textbf e\,\,+\,\frac{\lambda_2}{2}\textbf e^T\textbf V^{-1}\textbf e&=1\\ \end{aligned}\right. \tag{19}

    \quad Let:
    \left\{\begin{aligned} A&=\textbf R^T\textbf V^{-1}\textbf R\\ B&=\textbf e^T\textbf V^{-1}\textbf R=\left(\textbf e^T\textbf V^{-1}\textbf R\right)^T=\textbf R^T\textbf V^{-1}\textbf e\\ C&=\textbf e^T\textbf V^{-1}\textbf e\\ D&=AC-B^2 \end{aligned}\right. \tag{20}
    \quad\quad\textbf *\quad\left(\textbf V^{-1}\right)^T=\textbf V^{-1}

    \quad(19)\Longrightarrow \left\{\begin{aligned} A\lambda_1+B\lambda_2&=2\mu\\ B\lambda_1+C\lambda_2&=2\\ \end{aligned}\right. \tag{21}
    \,
    \quad It's\,\,easy\,\,to\,\,find\,\,that\,\,matrix
    \begin{pmatrix}A&B\\B&C\end{pmatrix} \tag{22}
    \quad is\,\,positive\,\,definite.\, Because:
    \begin{pmatrix}x&y\end{pmatrix}\begin{pmatrix}A&B\\B&C\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}=\left(x\textbf R+y\textbf e\right)^T\textbf V^{-1}\left(x\textbf R+y\textbf e\right) \tag{23}
    \,
    \quad So\,\,the\,\,linear\,\,equation\,\,(21)\,\,has\,\,the\,\,only\,\,solution:
    \left\{\begin{aligned}\lambda_1&=\frac{2\mu C-2B}{D}\\\lambda_2&=\frac{2\mu B-2A}{D}\end{aligned}\right. \tag{24}
    \,
    \quad Thus
    \textbf X^*=\frac{\mu C-B}{D}\textbf V^{-1}\textbf R-\frac{\mu B-A}{D}\textbf V^{-1}\textbf e \tag{25}\\

    \begin{aligned}\rm{min}\,\sigma_P^2&=\left(\textbf X^*\right)^T\textbf V\left(\textbf X^*\right)\\&=\left(\textbf X^*\right)^T\left[\frac{\mu C-B}{D}\textbf R-\frac{\mu B-A}{D}\textbf e\right]\\&=\frac{\mu C-B}{D}\mu-\frac{\mu B-A}{D}\end{aligned} \tag{26}

    E\left(r_P\right)=\left(\textbf X^*\right)^T\textbf R=\mu \tag{27}

    \,
    \quad and
    \sigma_P^2=\frac{E\left(r_P\right) C-B}{D}E\left(r_P\right)-\frac{E\left(r_P\right) B-A}{D} \tag{28}

    \,
    \quad We\,\,have
    \dfrac{\sigma_P^2}{\frac{1}{C}}-\dfrac{\left(E\left(r_P\right)-\frac{B}{C}\right)^2}{\frac{D}{C^2}}=1 \tag{29}

    \,
    \quad So\,\,we\,\,can\,\,conclude\,\,the\,\,coordinates\,\,of\,\,MVP\,\,are
    \left(\frac{1}{\sqrt C},\,\frac{B}{C}\right)\tag{30}

  • 存在无风险证券的情况

    无风险证券收益率为r_f,满足:
    \sigma_f^2=0
    E\left(r_f\right)=r_f

    记无风险证券投资比例为x_0,此时二次规划问题转化为:

    Problem:
    \begin{aligned}&{\rm min}\,\sigma_P^2=\textbf X^T\textbf V\textbf X\\&s.t.\,\begin{cases}x_0r_f+\textbf X^T\textbf R=\mu\\x_0+\textbf X^T\textbf e=1\\\end{cases}\end{aligned} \tag{31}

    Solution:

    \left(31\right)\,\Longrightarrow\,\textbf X^T\left(\textbf R-\textbf er_f\right)=\left(\mu-r_f\right)\tag{32}

    \quad Let:
    L=\textbf X^T\textbf V\textbf X-\lambda\left[\textbf X^T\left(\textbf R-\textbf er_f\right)-\left(\mu-r_f\right)\right] \tag{33}

    \quad Hence:
    \Longrightarrow\left\{\begin{aligned}\frac{\partial L}{\partial\textbf X}&=\left(\frac{\partial L}{\partial\textbf X_1},\cdots,\frac{\partial L}{\partial\textbf X_n}\right)^T=2\textbf V\textbf X-\lambda\left(\textbf R-\textbf er_f\right)=\textbf 0\\\frac{\partial L}{\partial \lambda}&=-\left[\textbf X^T\left(\textbf R-\textbf er_f\right)-\left(\mu-r_f\right)\right]=0\end{aligned}\right.\tag{34}

    \quad Thus:
    \textbf X=\frac{\lambda}{2}\textbf V^{-1}\left(\textbf R-\textbf er_f\right)\tag{35}

    \quad It\,\,follows\,\,from\,\,\left(32\right)\,\,that:
    \textbf X^T\left(\textbf R-\textbf er_f\right)=\frac{\lambda}{2}\left(\textbf R-\textbf er_f\right)^T\textbf V^{-1}\left(\textbf R-\textbf er_f\right)=\left(\mu-r_f\right)\tag{36}

    \quad Let:
    H=\left(\textbf R-\textbf er_f\right)^T\textbf V^{-1}\left(\textbf R-\textbf er_f\right)>0\tag{37}

    \quad Thus
    \begin{aligned}\textbf X^*&=\frac{\lambda}{2}\textbf V^{-1}\left(\textbf R-\textbf er_f\right)\\&=\frac{\mu-r_f}H\textbf V^{-1}\left(\textbf R-\textbf er_f\right)\end{aligned}\tag{38}

    \begin{aligned}\rm{min}\,\sigma_P^2&=\left(\textbf X^*\right)^T\textbf V\left(\textbf X^*\right)\\&=\frac{\mu-r_f}H\left(\textbf X^*\right)^T\left(\textbf R-\textbf er_f\right)\\&=\frac{\left(\mu-r_f\right)^2}H\end{aligned} \tag{39}

    E\left(r_P\right)=\mu \tag{40}

    \,
    \quad We\,\,have
    \sigma_P=\pm\frac{E\left(r_P\right)-r_f}{\sqrt H}\tag{41}

    可以看出,再加入无风险证券后,最小方差组合由双曲线的一支变为一条折线,其顶点坐标位为y轴上的点\left(o,\,r_f\right),位于定点上方的射线为有效前沿。
    \,

  • 两个最小方差组合的联系
    \,\left(29\right)\,\,\left(41\right)\,可知:

    \dfrac{\sigma_P^2}{\frac{1}{C}}-\dfrac{\left(E\left(r_P\right)-\frac{B}{C}\right)^2}{\frac{D}{C^2}}=\frac{\frac{\left[E\left(r_P\right)-r_f\right]^2}H}{\frac{1}{C}}-\dfrac{\left(E\left(r_P\right)-\frac{B}{C}\right)^2}{\frac{D}{C^2}}=1 \tag{42}

    其中,由\,\left(37\right)
    \begin{aligned}H&=\left(\textbf R-\textbf er_f\right)^T\textbf V^{-1}\left(\textbf R-\textbf er_f\right)\\&=\textbf R^T\textbf V^{-1}\textbf R-r_f\textbf e^T\textbf V^{-1}\textbf R-r_f\textbf R^T\textbf V^{-1}\textbf e+r_f^2\textbf e^T\textbf V^{-1}\textbf e\\&=A-r_fB-r_fB+r_f^2C\\&=A+r_f^2C-2r_fB\end{aligned}\tag{43}

    \,\left(20\right)
    D=AC-B^2
    代入\,\left(42\right)得:
    \frac{\left(E\left(r_P\right)-r_f\right)^2}{\frac AC+r_f^2-2r_f\frac BC}-\dfrac{\left(E\left(r_P\right)-\frac{B}{C}\right)^2}{\frac AC-\frac{B^2}{C^2}}=1
    整理得:
    \left[\left(E\left(r_P\right)-\frac BC\right)\left(r_f-\frac BC\right)-\frac D{C^2}\right]^2=0\tag{44}

    a)\,r_f=\frac BC\,时,方程\,\left(44\right)\,无解,说明此时两条曲线不交,这时容易验证曲线\,\left(41\right)\,恰为曲线\,\left(29\right)\,的两条渐近线。

    b)\,r_f\ne\frac BC\,时,方程\,\left(44\right)\,有重根:
    \begin{aligned}E\left(r_P\right)&=\frac BC+\frac{\frac D{C^2}}{\frac BC-r_f}\\&=\frac{A-Br_f}{B-Cr_f}\end{aligned}\tag{45}
    \quad说明此时两条曲线相切。
    \quad r_f<\frac BC\,时,曲线\,\left(41\right)\,的上半部分与曲线\,\left(29\right)\,的上半部分相切,如下图:


    \quad r_f>\frac BC\,时,曲线\,\left(41\right)\,的下半部分与曲线\,\left(29\right)\,的下半部分相切。

    实际情况下,无风险收益\,r_f\,一般低于\,MVP\,的收益,我们只需要考虑上述情况中\,r_f>\frac BC\,的情况即可。

  • 事实上,在已知其相切的条件下,我们还可以利用二次规划对切点坐标进行求解:

    Problem:
    {\rm min}\frac{E\left(r_P\right)-r_f}{\sigma_P}\\ s.t.\,\textbf X^T\textbf e=1\tag{46}

    \quad for
    E\left(r_P\right)=\textbf X^T\textbf R
    \quad and

    \sigma_P=\sqrt{\textbf X^T\textbf{V}\textbf{X}}

    Solution:

    \quad Let
    L=\frac{E\left(r_P\right)-r_f}{\sigma_P}-\lambda\left(\textbf X^T\textbf e-1\right)\tag{47}

    \quad Hence
    \Longrightarrow\,\begin{cases}\begin{aligned}\frac{\partial L}{\partial\textbf X}&=\left(\frac{\partial L}{\partial X_1},\cdots,\frac{\partial L}{\partial X_n}\right)^T\\&=\frac{\frac{\partial}{\partial\textbf X}E\left(r_P\right)\cdot\sigma_P-\left(E\left(r_P\right)-r_f\right)\cdot\frac{\partial}{\partial\textbf X}\sigma_P}{\sigma_P^2}-\lambda\textbf e\\&=\frac{\textbf R\sqrt{\textbf X^T\textbf V\textbf X}-\left(E\left(r_P\right)-r_f\right)\frac{\textbf V\textbf X}{\sqrt{\textbf X^T\textbf V\textbf X}}}{\sigma_P^2}-\lambda \textbf e\\&=\frac{\sigma_P\,\textbf R-\frac {E\left(r_P\right)-r_f}{\sigma_P}\,\textbf V\textbf X}{\sigma_P^2}-\lambda \textbf e\\&=0\\\frac{\partial L}{\partial \lambda}&=-\left(\textbf X^T\textbf e-1\right)=0\end{aligned}\end{cases}
    \quad Thus
    \Longrightarrow\,\begin{cases}\sigma_P^2\,\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf {VX}-\lambda\sigma_P^3\,\textbf e=0\\\textbf X^T\textbf e-1=0\end{cases}\tag{48}

    \quad a)
    \begin{aligned}\quad\Longrightarrow&\textbf X^T\left[\sigma_P^2\,\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf {VX}-\lambda\sigma_P^3\,\textbf e\right]\\=&\sigma_P^2\,\textbf X^T\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf X^T\textbf {VX}-\lambda\sigma_P^3\,\textbf X^T\textbf e\\=&\sigma_P^2\,E\left(r_P\right)-\left(E\left(r_P\right)-r_f\right)\sigma_P^2-\lambda\sigma_P^3\\=&0\end{aligned}
    \quad\quad that\,\,is
    r_f=\lambda\,\sigma_P\tag{49}

    \quad b)
    \begin{aligned}\quad\Longrightarrow&\textbf R^T\textbf V^{-1}\left[\sigma_P^2\,\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf {VX}-\lambda\sigma_P^3\,\textbf e\right]\\=&\sigma_P^2\,\textbf R^T\textbf V^{-1}\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf R^T\textbf X-\lambda \sigma_P^3\,\textbf R^T \textbf V^{-1}\textbf e\\=&A\,\sigma_P^2-\left(E\left(r_P\right)-r_f\right)E\left(r_P\right)-\lambda\,B\sigma_P^3\\=&0\end{aligned}
    \quad\quad that\,\,is
    \left(E\left(r_P\right)-r_f\right)E\left(r_P\right)=\sigma_P^2\left(A-\lambda\,B\sigma_P\right)\tag{50}
    \quad c)
    \begin{aligned}\Longrightarrow&\textbf e^T\textbf V^{-1}\left[\sigma_P^2\,\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf{VX}-\lambda\sigma_P^3\,\textbf e\right]\\=&\sigma_P^2\,\textbf e^T\textbf V^{-1}\textbf R-\left(E\left(r_P\right)-r_f\right)\textbf e^T\textbf X-\lambda\sigma_P^3\,\textbf e^T\textbf V^{-1}\textbf e\\=&B\,\sigma_P^2-\left(E\left(r_P\right)-r_f\right)-\lambda\,C\sigma_P^3\\=&0\end{aligned}
    \quad\quad that\,\,is
    E\left(r_P\right)-r_f=\sigma_P^2\left(B-\lambda\,C\sigma_P\right)\tag{51}
    \quad From\,(49)\sim(51)\,we\,\,know
    \frac{E\left(r_P\right)}{A-\lambda\,B\sigma_P}=\frac{\sigma_P^2}{E\left(r_P\right)-r_f}=\frac{1}{B-\lambda\,C\sigma_P}
    \begin{aligned}\Longrightarrow\,E\left(r_P\right)&=\frac{A-B\left(\lambda\sigma_P\right)}{B-C\left(\lambda\sigma_P\right)}\\&=\frac{A-Br_f}{B-Cr_f}\end{aligned}\tag{52}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容